Tính nhanh :1/2+1/6+1/12+1/20+...+1/100
tính nhanh tổng của 100 số hạng đầu của dãy 1/2+1/6+1/12+1/20;...
giải chi tiết nha
Ta thấy:
Số hạng thứ nhất: 1/2 = 1/1.2
Số hạng thứ hai: 1/6 = 1/2.3
Số hạng thứ ba: 1/12 = 1/3.4
Số hạng thứ tư: 1/20 = 1/4.5
..................................................
Số hạng thứ một trăm: 1/100.101
Vậy tổng của 100 số hạng đầu của dãy là:
1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/100.101
=> 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/100 - 1/101
=> 1 - 1/101
=> 100/101
tính nhanh tổng của 100 số hạng đầu tiên của dãy
a) 1.3 ; 3.5 ; 5.7 ; 7.9 ; ...
b) 1/6 ; 1/66 ; 1/176 ;1/336 ;...
c) 1/2 ; 1/6 ; 1/12 ; 1/20 ;...
Tính nhanh:
B=1/6+1/12+1/20+1/30+1/42+..........................1/90+1/100
H=[1-1/2] nhân [1-1/3] nhân ........................ nhân [1-1/2003] nhân[1-1/2004]
Em ơi chỗ 1/100 sửa lại thành 1/110 nha
B=\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
=\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)(Dấu . là nhân nha)
Áp dugj tổng quát \(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)ta có:
B=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
=\(\frac{1}{2}-\frac{1}{11}\)=\(\frac{9}{22}\)
H=\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\cdot\cdot\left(1-\frac{1}{2004}\right)\)
=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{2003}{2004}\)
=\(\frac{1}{2004}\)
\(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...........+\frac{1}{90}\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}+\frac{1}{10.10}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..........-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(H=\frac{1}{2}\times\frac{2}{3}\times..........\times\frac{2003}{2004}=\frac{1\times2\times3\times.............\times2003}{2\times3\times4\times.................\times2004}=\frac{1}{2004}\)
Tính nhanh : 1 / 2 + 1 / 6 + 1 / 12 + 1 / 20 + 1 / 30
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
=\(1-\frac{1}{6}\)
=\(\frac{5}{6}\)
1/2 + 1/6 + 1/12 + 1/20 + 1/30 [mẫu chung là 60 ]
= 1x30/2x30 + 1x10/6x10 + 1x5/12x5 + 1x3/20x3 + 1x2/30x2
= 30/60 + 10/60 + 5/60 + 3/60 + 2/60
= 50 / 60 [rút gọn = 5/6 ]
Tính nhanh :
1/2 + 2/4 + 3/6 + 4/8 + 5/10 + 6/12 =
1/3 + 1/4 + 1/5 + 8/10 + 20/15 + 20/30 =
`1/2+2/4+3/6+4/8+5/10+6/12`
`=1/2+1/2+1/2+1/2+1/2+1/2`
`=1/2*6=3`
`1/3+1/4+1/5+8/10+20/15+20/30`
`=(1/3+1/4)+(1/5+4/5)+(4/3+2/3)`
`=7/12+1+2`
`=7/12+3=43/12`
\(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{6}+\dfrac{4}{8}+\dfrac{5}{10}+\dfrac{6}{12}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\)
\(=\dfrac{1}{2}\times6=3\)
\(------\)
\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{8}{10}+\dfrac{20}{15}+\dfrac{20}{30}\)
\(=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{4}{5}+\dfrac{4}{3}+\dfrac{2}{3}\)
\(=\left(\dfrac{1}{3}+\dfrac{4}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{5}+\dfrac{4}{5}\right)+\dfrac{1}{4}\)
\(=\dfrac{7}{3}+1+\dfrac{1}{4}\)
\(=\dfrac{28}{12}+\dfrac{12}{12}+\dfrac{3}{12}\)
\(=\dfrac{43}{12}\)
`=1/2+1/2+1/2+1/2+1/2+1/2= 1/2 \times 6=3`
`----`
`=1/3+1/4+1/5+4/5+4/3+2/3 =(4/3+2/3+)+(1/5+4/5)+1/3+1/4=2+1+1/3+1/4=3+1/3+1/4=43/12`
tính nhanh: 1/2+1/6+1/12+1/20+1/30+1/42
1/2+1/6+1/12+1/20+1/30+1/42
=1/1*2+1/2*3+1/3*4+1/4*5+1/5*6+1/6*7
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)
=1-1/7
=6/7
neu co gi sai sot xin gui lai loi nhan
6/7 day minh vua lam dung ne o violympic do.
k cho minh nha cac ban.
đáp án của bài toán này là 6/7 còn cách làm thì làm như bn Hoang Ha Vy
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 = x - ( 2 + 4 + ... + 100 )
Mk cần gấp ai nhanh mk tick
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5) +1/(5.6)+1/(6.7)+1/(7.8) +1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6... +1/9-1/10
=1-1/10
=9/10
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}=x-\left(2+4+..+100\right)\)
Gọi \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)là \(A\)
\(\left(2+4+...+100\right)\)là \(B\). Ta có :
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
Số số hạng của \(B\)là: \(\left(100-2\right)\div2+1=50\)
Tổng của \(B\)là: \(\left(2+100\right)\times50\div2=2550\)
\(\Rightarrow\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}=x-\left(2+4+..+100\right)=\frac{9}{10}=x-2550\)
\(\Rightarrow x=2550+\frac{9}{10}=2550+0,9=2550,9\)
Tính: 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + .......... + 1/10100 (có 100 số hạng)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{10100}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+...+\frac{101-100}{100.101}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+\frac{5}{4.5}-\frac{4}{4.5}+\frac{6}{5.6}-\frac{5}{6.5}+...+\frac{101}{100.101}-\frac{100}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
A= 1/1.2 +1/2.3 + 1/3.4 + 1/4.5 +...............+ 1/100.101
A= 1 - 1/2 +1/2 - 1/3 + 1/3 - 1/4 +..................+1/100 - 1/101
A= 1 - 1/101
A = 100/101
Tính nhanh: \(\dfrac{1}{2}\)+ \(\dfrac{1}{6}\)+ \(\dfrac{1}{12}\)+ \(\dfrac{1}{20}\) + ... + \(\dfrac{1}{90}\)
sau đây là phần chữa của mình:
\(=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{10}\)
= \(\dfrac{3}{10}\)
= \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
= \(\dfrac{1}{2}-\dfrac{1}{10}\)
= \(\dfrac{2}{5}\)
chỗ đầu mình quên cộng thêm 1/2 rồi bạn nhớ bổ sung nha thì sẽ ra kết quả đúng nhé