Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Anh
Xem chi tiết
nguyen thi vang
27 tháng 11 2021 lúc 16:36

a) Ta có: ^BAH = ^BCA (vì 2 góc này cùng phụ với ^B) 
Mà: ^MAC = ^BCA (tg MAC cân tại M vì Tg ABC vuông tại A có AM là trung tuyến) 
Nên: ^BAH = ^MAC (4) 
b) Tg AMD cân tại M (vì MA=MD) => ^D = ^DAM (1) 
Ta có: MD//AH ( vì MD_I_ HM, AH _I_ HM ) 
Nên: ^D = ^DAH (2) 
(1)(2) => ^DAM = ^DAH (3) => AD là p/g của ^HAM (5) 
(3)(4) => ^BAH + ^DAH = ^MAC + ^DAM <=> ^BAD=^CAD => AD là p/g của ^BAC (6) 
(5)(6) => AD là p/g chung của ^HAM và ^BAC 
c) Ta có: AEDF là hcn ( vì ^E=^F=^A=90o ) 
Mà: AD là p/g của ^EAC (cmt) 
Nên: AEDF là hình vuông 
d) Tg DBE (^DEA=90o) và tg DCF (^DFC=90o) có: 
DE = DF (AEDF là hình vuông) 
DB = DC (MD là đường trung trực của BC) 
Nên: Tg DBE = tg DCF (ch-cgv)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 7 2019 lúc 8:09

a)  B A H ^ + M A C ^  vì cùng phụ với  A B C ^

b) A 1 ^ = C 1 ^ (1) (chứng minh a)

DABC vuông có AM là trung tuyến nên DAMC cân tại M C 1 ^ = A 4 ^ (2).

Từ (1) và (2) suy ra A 1 ^ = A 4 ^ (3)

D thuộc đường trung trực của BC.

Þ DM ^ BC = {M}

Þ  D 1 ^ = A 2 ^

Vì DM = MA (giả thiết) ⇒   M 1 ^ =   A 3 ^   ⇒   A 2 ^ = A 3 ^    (4)

Từ (3) và (4) Þ AD là phân giác chung của  M A H ^   & C A B ^

c) Theo cách vẽ và kết quả câu b), ta có AEDF là hình vuông.

d) DDBE = DDCF  (cạnh huyền - cạnh góc vuông)

Lê An Hà
Xem chi tiết
Le Nhat Phuong
6 tháng 9 2017 lúc 13:31

a) Ta có: ^BAH = ^BCA (vì 2 góc này cùng phụ với ^B) 
Mà: ^MAC = ^BCA (tg MAC cân tại M vì Tg ABC vuông tại A có AM là trung tuyến) 
Nên: ^BAH = ^MAC (4) 
b) Tg AMD cân tại M (vì MA=MD) => ^D = ^DAM (1) 
Ta có: MD//AH ( vì MD_I_ HM, AH _I_ HM ) 
Nên: ^D = ^DAH (2) 
(1)(2) => ^DAM = ^DAH (3) => AD là p/g của ^HAM (5) 
(3)(4) => ^BAH + ^DAH = ^MAC + ^DAM <=> ^BAD=^CAD => AD là p/g của ^BAC (6) 
(5)(6) => AD là p/g chung của ^HAM và ^BAC 
c) Ta có: AEDF là hcn ( vì ^E=^F=^A=90o ) 
Mà: AD là p/g của ^EAC (cmt) 
Nên: AEDF là hình vuông 
d) Tg DBE (^DEA=90o) và tg DCF (^DFC=90o) có: 
DE = DF (AEDF là hình vuông) 
DB = DC (MD là đường trung trực của BC) 
Nên: Tg DBE = tg DCF (ch-cgv)

Vũ Đức Long
24 tháng 9 2017 lúc 8:48

bạn vẽ hình kiểu j thế?????

đoàn khánh linh
22 tháng 12 2017 lúc 20:11

chang hieu gi

Đặng Thu Trang
Xem chi tiết
Ma Kết dễ thương
Xem chi tiết
thiên thần dễ thương
22 tháng 5 2016 lúc 20:09

ma kết gái với dễ thương , còn trai ko phải

Công Chúa Ma Kết
22 tháng 5 2016 lúc 20:33

Có sao đâu cung Ma Kết đẹp mà

Phạm Thị Khánh An
Xem chi tiết
Kuroba Kaito
28 tháng 2 2019 lúc 12:30

A B C H M N P I

Cm: a) Xét t/giác ABH và t/giác ACH

có AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

 AH : chung

=> t/giác ABH = t/giác ACH (ch - cgn)

=> góc BAH = góc HAC (hai góc tương ứng)         (Đpcm)

=> BH = CH (hai cạnh tương ứng)

=> H là trung điểm của BC

b) Xét t/giác AMH và t/giác ANH

có góc AMH = góc ANH = 900 (gt)

        AH : chung

  góc MAH = góc NAH (Cmt)

=> t/giác AMH = t/giác ANH (ch - gn)

=> AM = AN (hai cạnh tương ứng)

=> T/giác AMN là t/giác cân tại A

c) Gọi I là giao điểm của BC và MP

Ta có: T/giác AMH = t/giác ANH (Cmt)

=> MH = HN (hai cạnh tương ứng)

Mà HN = PH (gt)

=> MH = PH 

Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)

              góc AHN + góc NHC = 900 (phụ nhau)

Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)

=> góc MHB = góc NHC 

Mà góc NHC = góc BHP 

=> góc MHB = góc BHP

Xét t/giác MHI và t/giác PHI

có MH = PH (cmt)

   góc MHI = góc IHP (cmt)

  HI : chung

=> t/giác MHI = t/giác PHI (c.g.c)

=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)

=> góc MIH = góc HIP (hai góc tương ứng)

Mà góc MIH + góc HIP = 1800

=> 2.góc MIH = 1800

=> góc MIH = 1800 : 2

=> góc MIH = 900

=> HI \(\perp\)MP (2)

Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP

hay BC là đường trung trực của đoạc thẳng MP (Đpcm)

d) tự lm

Bùi Tiến Dũng
28 tháng 2 2019 lúc 12:30

Cm: a) Xét t/giác ABH và t/giác ACH

có AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

 AH : chung

=> t/giác ABH = t/giác ACH (ch - cgn)

=> góc BAH = góc HAC (hai góc tương ứng)         (Đpcm)

=> BH = CH (hai cạnh tương ứng)

=> H là trung điểm của BC

b) Xét t/giác AMH và t/giác ANH

có góc AMH = góc ANH = 900 (gt)

        AH : chung

  góc MAH = góc NAH (Cmt)

=> t/giác AMH = t/giác ANH (ch - gn)

=> AM = AN (hai cạnh tương ứng)

=> T/giác AMN là t/giác cân tại A

c) Gọi I là giao điểm của BC và MP

Ta có: T/giác AMH = t/giác ANH (Cmt)

=> MH = HN (hai cạnh tương ứng)

Mà HN = PH (gt)

=> MH = PH 

Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)

              góc AHN + góc NHC = 900 (phụ nhau)

Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)

=> góc MHB = góc NHC 

Mà góc NHC = góc BHP 

=> góc MHB = góc BHP

Xét t/giác MHI và t/giác PHI

có MH = PH (cmt)

   góc MHI = góc IHP (cmt)

  HI : chung

=> t/giác MHI = t/giác PHI (c.g.c)

=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)

=> góc MIH = góc HIP (hai góc tương ứng)

Mà góc MIH + góc HIP = 1800

=> 2.góc MIH = 1800

=> góc MIH = 1800 : 2

=> góc MIH = 900

=> HI MP (2)

Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP

hay BC là đường trung trực của đoạc thẳng MP (Đpcm)

Trịnh Phan Hoàng Anh
24 tháng 4 2019 lúc 20:10

câu d sao không làm luôn đi

Phương Uyên Võ Ngọc
Xem chi tiết
Đỗ Thị Dung
28 tháng 4 2019 lúc 22:14

bài 1 đề bài có sai ko?

Phương Uyên Võ Ngọc
29 tháng 4 2019 lúc 22:08

Đề đúng nha bạn

IS
22 tháng 2 2020 lúc 20:03

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Jvhcjvvhv
Xem chi tiết
Tẫn
30 tháng 4 2019 lúc 14:19

Tham khảo tại link này nhé !

https://olm.vn/hoi-dap/detail/219404925266.html 

Hồ Hoàng Trúc Vân
30 tháng 4 2019 lúc 14:39

a)Xét\(\Delta ABE\)\(\Delta DBE\)có:

\(AB=DB\left(GT\right)\)

\(\widehat{BAE}=\widehat{BDE}\left(=90^o\right)\)

\(BE\)là cạnh chung

Do đó:\(\Delta ABE=\Delta DBE\)(cạnh huyền-cạnh gv)

b)Vì\(\Delta ABE=\Delta DBE\)(cm câu a) nên\(\widehat{ABE}=\widehat{DBE}\)(2 cạnh t/ứ)

Gọi\(K\)là giao điểm của\(AD\)\(BE\)

Xét\(\Delta ABK\)\(\Delta DBK\)có:

\(AB=DB\left(GT\right)\)

\(\widehat{ABK}=\widehat{DBK}\left(cmt\right)\)

\(BK\)là cạnh chung

Do đó:\(\Delta ABK=\Delta DBK\)(c-g-c)

\(\Rightarrow\widehat{AKB}=\widehat{DKB}\)(2 góc t/ứ)

\(AK=DK\)(2 cạnh t/ứ)

Ta có:\(\widehat{AKB}+\widehat{DKB}=180^o\)(2 góc KB)

\(\widehat{AKB}=\widehat{DKB}\left(cmt\right)\)

\(\Rightarrow\widehat{AKB}=\widehat{DKB}=\frac{180^o}{2}=90^o\)

\(\Rightarrow BK\perp AD\)

mà \(K\)là trung điểm của\(AD\)do\(AK=DK\left(cmt\right)\)

\(\Rightarrow BK\)là đường trung trực của\(AD\)

c)Xét\(\Delta ABC\)\(\Delta DBF\)có:

\(\widehat{B}\)là góc chung

\(AB=DB\left(GT\right)\)

\(\widehat{BAC}=\widehat{BDF}\left(=90^o\right)\)

Do đó:\(\Delta ABC=\Delta DBF\)(g-c-g)

\(\Rightarrow BC=BF\)(2 cạnh t/ứ)

Xét\(\Delta BCF\)có:\(BC=BF\left(cmt\right)\)

Do đó:\(\Delta BCF\)cân tại\(A\)(Định nghĩa\(\Delta\)cân)

Đặng Phong Phú
Xem chi tiết