Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lại Thị Liễu
Xem chi tiết
Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
Trần Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2023 lúc 22:46

\(1-\dfrac{3}{n\left(n+2\right)}=\dfrac{n\left(n+2\right)-3}{n\left(n+2\right)}=\dfrac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)

\(\Rightarrow M=\dfrac{1.5}{2.4}.\dfrac{2.6}{3.5}.\dfrac{3.7}{4.6}...\dfrac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)

\(=\dfrac{1.2.3...\left(n-1\right)}{2.3.4...n}.\dfrac{5.6.7...\left(n+3\right)}{4.5.6...\left(n+2\right)}\)

\(=\dfrac{1}{n}.\dfrac{n+3}{4}=\dfrac{n+3}{4n}=\dfrac{1}{4}+\dfrac{3}{4n}>\dfrac{1}{4}\) (đpcm)

Dương Kim Chi
Xem chi tiết
Truong_tien_phuong
Xem chi tiết
Trần Thùy Linh
Xem chi tiết
Nguyễn Thanh Hằng
28 tháng 3 2017 lúc 14:02

Đặt :

\(A=\dfrac{3}{9.14}+\dfrac{3}{14.19}+......................+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}\)

\(A.\dfrac{5}{3}=\dfrac{5}{9.14}+\dfrac{5}{14.19}+..................+\dfrac{5}{\left(5n-1\right)\left(5n+1\right)}\)

\(A.\dfrac{5}{3}=\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+..................+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\)

\(A.\dfrac{5}{3}=\dfrac{1}{9}-\dfrac{1}{5n+4}\)

\(A=\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right):\dfrac{3}{5}\)

\(A=\left(\dfrac{1}{9}-\dfrac{1}{5n+\text{4}}\right).\dfrac{3}{5}\)

\(A=\dfrac{1}{9}.\dfrac{3}{5}-\dfrac{1}{5n+4}.\dfrac{3}{5}\)

\(A=\dfrac{1}{15}-\dfrac{1}{5.\left(5n+4\right)}\)

\(\Rightarrow A< \dfrac{1}{15}\)

\(\Rightarrowđpcm\)

Chúc bn học tốt!!!!!!!!!!

Anh Bên
Xem chi tiết
alibaba nguyễn
14 tháng 1 2017 lúc 11:59

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(< \left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán ta được

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

\(\RightarrowĐPCM\)

Dương Kim Chi
Xem chi tiết