tim cac so nguyen x:
(x-3)(x+2)>0
1,tim cac so nguyen x,y biet: -2/x=y/3 va x<0<y
2, Tim cac so nguyen x,y biet:x-3/y-2=3/2 va x-y=4
-2/x=y/3
=> -2.3 = xy
xy= -6
Mà x>0>y => x là số nguyên âm còn y là số nguyên dương
Lập bảng ( cái này bn tự lâp)
=> Các cặp số nguyên x,y là: x=-2,y=3 ; x= -3,y=2; x=-1,y=6 ; x=-6,y= 1
Do x-y = 4 => x= 4+y
thjays x=4+y vào x-3/y-2=3/2, có:
x-3/y-2=3/2 = 4+y-3/y-2 = 3/2 = y+1/y-2=3/2
=> 2(y+1)= 3(y-2)
2y+2 = 3y-6
3y-2y = 2+6
y=8
thay y= 8 vào x=4+y, có:
x= 4+ 8 = 12
vạy x=12; y=8
tim cac so nguyen x,y biet (x - 3) x (x + 2) <0
(x - 3)(x + 2) <0
=> x-3 và x+2 trái dấu
mà x-3 < x+2
\(\Rightarrow\) \(\hept{\begin{cases}x-3< 0\\x+2>0\end{cases}\Rightarrow-3< x< 2}\)
\(\Rightarrow x\in\left\{-2;-1;0;1\right\}\)
Có (x-3)(x+2) < 0
Mà x - 3 và x + 2 là hai số khác dấu ; x + 2 > x + 3
\(\Rightarrow\hept{\begin{cases}x-3< 0\\x+2>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 3\\x>-2\end{cases}}\)\(\Rightarrow\)\(-2< x< 3\)
\(\Rightarrow\)x \(\in\){ -1;0;1;2 }
Vậy x \(\in\){ -1;0;1;2 }
tim cac so nguyen x biet(2x+2)(x-3)=0
\(\left(2x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow2\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy \(x=-1;3\)
\(\left(2x+2\right)\left(x-3\right)=0\)
\(\Rightarrow2\left(x+2\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}}\)
Từ đề bài suy ra hai trường hợp nhé 2x+2=0 hoặc x-3=0. Còn lại bạn giải tiếp
CHÚC BẠN HỌC TỐT
tim cac so nguyen x,y:
(x-3)(x+2)>0
tim cac so nguyen x,y biet x^2-(y-3)x-2y-1=0
ta có : x2 - (y-3)x - 2y - 1 =0 <=> x2 - xy +3x -2y -1 =0 <=> x2 +3x -1 = xy +2y
<=> x2 + 3x -1 =y(x+2) xét x=-2 không phải là nghiệm ( đoạn này để khẳng định \(x+2\ne0\)nhằm đưa x+2 xuống mẫu)
<=> \(\frac{x^2+3x-1}{x+2}=y\)
Vì \(y\in Z\) nên \(\frac{x^2+3x-1}{x+2}=y\) hay \(x^2+3x-1⋮x+2\) <=> \(\left(x+2\right).\left(x+1\right)-3⋮x+2\)
hay \(-3⋮x+2\)(vì\(\left(x+2\right).\left(x+1\right)⋮x+2\)
=>\(x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\) <=> \(x\in\left\{-5;-3;-1;1\right\}\)
=> x=-5 =>y= -3
x=-3 =>y=1
x=-1 =>y-3
x=1 =>y=1
Tim cac so nguyen x thoa man (x-7)(x+3) nho hon 0
Vì (x−7)(x+3)<0
⇒x−7>0; x+3<0
x−7<0; x+3>0
⇒x>7;x<−3
x<7;x>−3
⇒−3<x<7
Vậy −3<x<7
tim cac so nguyen x biet
a) (2x - 10 )(x + 3)=0
b)(x+ 5)(x2 - 9)=0
\(a,\left(2x-10\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-10=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
Vậy .........
\(b,\left(x+5\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}\)
Vậy ......
\(a,\left(2x-10\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-10=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=10\\x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
\(b,\left(x+5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x^2-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x^2=9\end{cases}\Rightarrow}\orbr{\begin{cases}x=-5\\x=3or-3\end{cases}}}\)
1.Tim cac chu so x va y de so 1x8y2 chia het cho 36
2.tim cac gia tri nguyen cua n de phan so A=3.n+2/n-1 co gia tri la so nguyen
3.tim cac chu so x y thoa man
(x-2)^2.(x-3)^2=4
4.tim so tu nhien x biet
(x-5):3/100=20.x/100 +5
Tim cac so nguyen x,y(y>0) biet |xm^2-1|+(y^2-3)=2 tim x nho cach lam nua nha