tim so tu nhien n sao cho 3n + 7 chia het cho n +1
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
tim so tu nhien n sao cho 3n+4 chia het cho n+1
3n+4=3n+3+1=3(n+1)+1
3(n+1): hết cho n+1 nên 1: hết cho n+1
vì n là STN nên n+1=1
vậy n=0
k nha bạn
=> 3(n+1) + 1 chia het n+1
=> 1 chia het n+1
=> n+1 thuoc uoc cua 1 { -1 ; 1}
=> n=0;-2
Ma n la so tu nhien => n=0
3n + 4 chia hết cho n + 1
=> 3( n + 1 ) + 1 chia hết cho n + 1
Vì 3(n+1) chia hết cho n+ 1
=> 1 chia hết cho n+1
=> n + 1 thuộc {-1;1}
=> n thuộc {-2;0}
Tim so tu nhien n sao cho:
a)n+2 chia het cho n-1
b)2n+7 chia het cho n+1
c)2n+1 chia het cho 6-n
d)3n chia het cho 5-2n
e)4n +3 chia het cho 2n+6
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
giup minh bai nay nha!
tim so tu nhien n biet:
A, 3n + 7 chia het cho n+2
B, 6n +7 chia het cho 2n+1
C, 3n^3 n^2+4 chia het cho 3n+1
D, 3n^3 + 10n^2 - 5 chia het cho 3n+1
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
tim so tu nhien sao cho 3n+10 chia het cho n+2
3n + 10 = 3n + 6 + 4 = 3(n + 2) + 4 chia hết cho n + 2 thì 4 chia hết cho n + 2
n + 2 | 1 | 2 | 4 |
n | -1\(\notin N\)(loại) | 0 | 2 |
Vậy n = 0 ; 2 thỏa mãn đề
Tim so tu nhien n sao cho
(n+2) chia het cho (n+1)
(2n+7) chia het cho (n+1)
3n chia het cho (5 * 24)
(4n+3) chia het cho (2n-6)
(2n+1) chia het cho (6-n)
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
Bài 3
3n ⋮ 5.24
n ⋮ 40
n = 40k (k \(\in\) N)
Vậy n = 40k ; k \(\in\) N
tim so tu nhien x sao cho 3n+5 chia het cho n+2
3n + 5 = 3n + 6 - 1 = 3(n + 2) - 1 chia hết cho n + 2 thì 1 chia hết cho n + 2 => n + 2 = 1 => n = -1\(\notin N\)
Vậy ko có số tự nhiên thỏa mãn đề
tim so tu nhien N de
a] n+7 chia het cho n+2
b] 3n+4 chia het cho n+1
c] n^2+3 chia het cho n+4
bai 1: tim so tu nhien x sao cho x+10 chia het cho 5; x-18 chia het cho 6; 21+ x chia het cho 7 vao 500<x<700
bai 2: tim tat ca cac Uoc chung cua :
2n + 1; 3n+1 (n thuộc N)
5n+ 6 ; 8n +7 (n thuộc N)
1)
Ta có:
x + 10 chia hết cho 5
10 chia hết cho 5
\(\Rightarrow\)x chia hết cho 5
x - 18 chia hết cho 6
18 chia hết cho 6
\(\Rightarrow\)x chia hết cho 6
x + 21 chia hết cho 7
21 chia hết cho 7
\(\Rightarrow\)x chia hết cho 7
\(\Rightarrow\)x \(\in\)BC ( 5;6;7 )
BC ( 5;6;7 ) = {0 ; 210 ; 420 ; 630 ; 840 ; ... }
Vì x \(\in\)BC( 5;6;7 ) và 500 < x < 700\(\Rightarrow\)x = 630