Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đăng Chính
Xem chi tiết
Vũ Phương Thảo
Xem chi tiết
๖Fly༉Donutღღ
Xem chi tiết
Despacito
18 tháng 9 2017 lúc 22:03

dat m = 3k + r voi 0 \(\le\)\(\le\) 2 va n = 3t + s

=> xm  + xn + 1  = x3k + r + x3t +s + 1 = x3k. xr - xr + x3t . xs - xs + xr + xs +1

                                                     = xr ( x3t -1) + xs ( x3t - 1) + xr + xs + 1

ta thay: x3k-1 \(⋮\)  \(\left(x^2+x+1\right)\)va \(\left(x^{3t}-1\right)⋮\left(x^2+x+1\right)\) 

vay \(\left(x^m+x^n+1\right)⋮\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x^r+x^s+1\right)⋮\left(x^2+x+1\right)\)voi \(0\le r;s\le2\)

\(\Leftrightarrow r=2;x=1\Rightarrow m=3k+2;n=3t+1\)

\(r=1;s=2\Rightarrow m=3k+1;n=3t+2\)

\(\Leftrightarrow mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\)

\(mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\)

\(\Rightarrow\left(mn-2\right)⋮3\)

ap dung:  \(m=7;n=2;\Rightarrow mn-2=12⋮3\)

\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)\)

\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)

Ngo Tung Lam
18 tháng 9 2017 lúc 21:46

⇒xm+xn+1=x3k+r+x3t+s+1=x3k.xr−xr+x3t.xs−xs+xr+xs+1

                                                                       =xr(x3t−1)+xs(x3t−1)+xr+xs+1

Ta thấy: (x3k−1)chia hết (x2+x+1)và (x3t−1) chia hết (x2+x+1)

Vậy: (xm+xn+1)chia hết (x2+x+1)

⇔(xr+xs+1)chia hết (x2+x+1)với 0≤r;s≤2

⇔r=2;x=1⇒m=3k+2;n=3t+1

      r=1;s=2⇒m=3k+1;n=3t+2

⇔mn−2=(3k+2)(3t+1)−2=9kt+3k+6t=3(3kt+k+2t)

      mn−2=(3k+1)(3t+2)−2=9kt+6k+3t=3(3kt+2k+t)

⇒mn−2chia hết cho 3.

Áp dụng:m=7;n=2⇒mn−2=12chia hết cho 3

⇒(x7+x2+1) chia hết cho (x2+x+1)

๖Fly༉Donutღღ
18 tháng 9 2017 lúc 21:29

các bạn CTV vô đây giải bài này vs :(

càfêđắng
Xem chi tiết
Lê Minh Hà
Xem chi tiết
Lê Hoàng Tiến Đạt
15 tháng 8 2016 lúc 15:53

câu này chịu

nhất thám tử
26 tháng 11 2016 lúc 22:50

bố nó biết

Lê Phan Hà My
22 tháng 8 2017 lúc 14:44

mình mới học lớp 5 mà

Trang Hồ
Xem chi tiết
Nguyễn Ngọc Anh Minh
30 tháng 10 2020 lúc 9:23

a/

\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)

\(5x+47y=\left(5x+30y\right)+17y\)

\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)

b/

\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)

Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)

Khách vãng lai đã xóa
Nguyễn Đức Duy
Xem chi tiết
Lê Song Phương
4 tháng 10 2023 lúc 16:42

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)

 

Lonely Boy
Xem chi tiết
Lonely Boy
8 tháng 1 2016 lúc 11:17

dễ zậy mà 5 tháng trời rùi vẫn hổng có ai giải đc

Thảo Mai Phù Thủy
Xem chi tiết
Mr Lazy
15 tháng 7 2015 lúc 11:27

+TH1: x⋮3 và y⋮3 thì x2⋮3 và y2⋮3 => x2+y2⋮3.

+TH2: x⋮3 và y không chia hết cho 3 (hoặc x không chia hết cho 3 và y⋮3)
=> x2⋮3 và y2 không chia hết cho 3 => x2+y2 không chia hết cho 3 -> loại

+TH3: x và y cùng chia 3 dư 1; giả sử x = 3a+1; y = 3b+1

\(x^2+y^2=\left(3a+1\right)^2+\left(3b+1\right)^2=9a^2+6a+1+9b^2+6b+1=3\left(3a^2+2a+3b^2+2b\right)+2\)

=> x2+y2 chia 3 dư 2 -> loại.

+TH4: x và y cùng chia 3 dư 2; giả sử x = 3a-1; y = 3b-1

\(x^2+y^2=\left(3a-1\right)^2+\left(3b-1\right)^2=9a^2-6a+1+9b^2-6b+1=3\left(3a^2-2a+3b^2-2b\right)+2\)=> x2+y2 chia 3 dư 2 -> loại

+TH5: x chia 3 dư 1 và y chia 3 dư 2 (hoặc x chia 3 dư 2 và y chia 3 dư 1); giả sử x = 3a+1; y = 3b-1

\(x^2+y^2=\left(3a+1\right)^2+\left(3b-1\right)^2=9a^2+6a+1+9b^2-6b+1=3\left(3a^2+2a+3b^2-2b\right)+2\)=> x2+y2 chia 3 dư 2 -> loại

Vậy: x2 + y2 chia hết cho 3 khi và chỉ khi x và y chia hết cho 3.