chứng minh rằng
5x+47y:17 thif x+6y cũng chia hết cho 17 và ngược lại
cho x, y nguyên. CMR: nếu 5x + 47y chia hết cho 17 thì x + 6y cũng chia hết cho 17 và ngược lại.
5x+47y chia hết cho 17
<=>5x+30y +17y chia hết cho 17
mà 17y chia hết cho 17
=> 5x+30y chia hết cho 17
<=>5(x+6y) chia hết cho 17
mà (5,17)=1
nên x=6y chia hết cho 17
Đúng thì Li.ke nha bạn
5x+47y chia hết cho 17
<=>5x+30y +17y chia hết cho 17
mà 17y chia hết cho 17
=> 5x+30y chia hết cho 17
<=>5(x+6y) chia hết cho 17
mà (5,17)=1
nên x=6y chia hết cho 17
Đúng thì Li.ke nha bạ
chứng minh rằng:5x + 47y chia hết cho 17 khi x + 6y chia hết cho 17 và x;y thuộc Z
Giúp mình bài này nhé ai làm nhanh đúng mính sẽ tick :
Bài 1 : Cho x,y E z, Chứng tỏ rằng ;
a, Nếu (6x+11y) chia hết cho 31 thì x+7y cũng chia hết cho 31
điều ngược lại có đúng không?
b,Nếu 5x+47y la B(17) thì x+6y là B(17)
Cho x; y € Z và x+6y là bội của 17. Chứng minh rằng 5x+47y cũng là bội của 17
Help me!!!!!!!
Vì \(x+6y\)là bội của 17
\(\Rightarrow5\left(x+6y\right)=5x+30y\)cũng là bội của 17
mà \(17y⋮17\)\(\Rightarrow17y\)là bội của 17
\(\Rightarrow5x+30y+17y=5x+47y\)là bội của 17 ( đpcm )
chứng minh rằng : A= (5x+47y) . (x+6y) chia hết cho 17 thì A chia hết cho 289
cho x, y thuộc Z chứng minh 5x+ 47y chia het cho 17 <=> x+6y chia het cho 17
CMR:5x+47y chia hết cho 17 khi x+6y chia hết cho 17[x;y thuộc Z ]
1 Chứng tỏ rằng:
a)(n^2+n) chia hết cho 2 (với mọi n thuộc z)
b) (n^2+n+3) ko chia hết cho 2(với mọi n thuộc z)
2)Cho x;y thuộc z .Chứng minh rằng (5x+47y) chia hết cho 17 khi và chỉ khi (x+6y) chia hết cho 17
Help Me!
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
\(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm
\(n^2+n+3=n\left(n+1\right)+3\)
Vì n(n+1) chia hết cho 2 => số cuối là số chẵn => n(n+1) + 3 có số cuối là số lẻ
Vậy n^2+n+3 ko chia hết cho 2
Chứng minh rằng nếu 2x+3y chia hết cho 17 thì 9x+5x cũng chia hết cho 17 và ngược lại
9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y)
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17 và điều ngược lại
tk nha bạn
thank you bạn
(^_^)
9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y)
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17 và điều ngược lại