Tìm cặp số nguyên khác không (x;y) thỏa mãn xy = (x + y)
tìm cặp số nguyên khác 0 (x;y) thỏa mãn xy=x+y là
tô ngán toán nâng cao lớp 6 lắm rồi thề luôn
\(\text{Gọi ƯCLN(2x+5;x+2)=d}\left(d\in N\right)\)
\(\text{Ta có:}\)
\(\text{2x+5⋮d;x+2⋮d}\)
\(\Rightarrow\text{2x+5⋮d;2(x+2)⋮d}\)
\(\Rightarrow\text{2x+5⋮d;2x+4⋮d}\)
\(\Rightarrow\text{2x+5-(2x+4)⋮d}\)
\(\Rightarrow\text{2x+5-2x-4⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\Rightarrow d=1\)
\(\Rightarrow\text{ƯCLN}\left(2x+5;x+2\right)=1\)
\(\Rightarrow\text{2x+5 không chia hết cho 3 hoặc x+2 không chia hết cho 3 hoặc cả hai không chia hết cho 3}\)
\(\text{TH1:2x+5 không chia hết cho 3;x+2 chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{TH2:2x+5 chia hết cho 3;x+2 không chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{TH3:2x+5 không chia hết cho 3;x+2 không chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{Vậy không có cặp số tự nhiên (x,y) thỏa mãn}\)
tìm cặp số nguyên xy không âm thỏa mãn: x-y=x^2+xy-y^2
Tìm các cặp số nguyên không âm (x;y) thỏa mãn x - y = x^2 + xy + y^2
Giải thử nha , đừng làm theo mình!
Vì x ; y là các số nguyên không âm
\(\Rightarrow x\ge x-y=x^2+y^2+xy\ge2xy+xy=3xy\)
Nếu x = 0 thì - y = y2 => y = 0Nếu x > 0 kết hợp với x ≥ 3xy ta được 1 ≥ 3y , từ đó y = 0 => x = x2 => x = 1Vậy phương trình có nghiệm ( x ; y ) là ( 0 ; 0 ) và ( 1 ; 0 )
Tìm tất cả các cặp số tự nhiên khác không ( x , y ) sao cho ( 2x + 5 ) . ( x + 2 ) = 3y
Gọi ƯCLN(2x+5;x+2) = d(d\(\in N\))
Ta có:
2x+5 chia hết cho d;x+2 chia hết cho d
\(\Rightarrow\)2x+5 chia hết cho d;2(x+2) chia hết cho d
\(\Rightarrow\)2x+5 chia hết cho d;2x+4 chia hết cho d
\(\Rightarrow\)2x+5-(2x+4) chia hết cho d
\(\Rightarrow\)2x+5-2x-4 chia hết cho d
\(\Rightarrow\)1 chia hết cho d\(\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2x+5;x+2\right)=1\)
\(\Rightarrow\)2x+5 không chia hết cho 3 hoặc x+2 không chia hết cho 3 hoặc cả hai không chia hết cho 3
TH1:2x+5 không chia hết cho 3;x+2 chia hết cho 3
\(\Rightarrow\)(2x+5).(x+2)\(\ne\)3y
\(\Rightarrow\)Không có cặp số (x,y) thỏa mãn
TH2:2x+5 chia hết cho 3;x+2 không chia hết cho 3
\(\Rightarrow\)(2x+5).(x+2)\(\ne\)3y
\(\Rightarrow\)Không có cặp số (x,y) thỏa mãn
TH3:2x+5 không chia hết cho 3;x+2 không chia hết cho 3
\(\Rightarrow\)(2x+5).(x+2)\(\ne\)3y
\(\Rightarrow\)Không có cặp số (x,y) thỏa mãn
Vậy không có cặp số tự nhiên (x,y) thỏa mãn
https://www.youtube.com/channel/UCjP80p-OtLhNnRs-R4Q7yjw
Vì y là số tự nhiên <>0 nên 3y chỉ có các ước số là 1 và các dạng lũy thừa của 3, do đó (2x+5) và (x+2) là ước số của 3y thì chúng cũng phải có dạng là 1 hoặc lũy thừa của 3
Nếu x=3k thì x+2=3k+2 không chia hết cho 3, mâu thuẫn với điều trên
Nếu x=3k+1 thì 2x+5=6k+7=3(2k+2)+1 không chia hết cho 3, mâu thuẫn với điều trên
Nếu x=3k+2 thì x+2=3k+4=3(k+1)+1 không chia hết cho 3, mâu thuẫn với điều trên
Do đó không tồn tại cặp số x,y nào thỏa mãn đề bài
1) Tìm các số a,b thỏa mãn trong các điều kiện sau:
a + b = | b | - | a |
2) Có bao nhiêu cặp số nguyên (x,y) thỏa mãn một trong các điều kiện sau:
| x | + | y | = 20
| x | + | y | < 20
(Các cặp số (3 ; 4) và (4 ; 3) là hai cặp số khác nhau).
tìm x,y biết 7\x =y\1 với x,y là số nguyên khác không
Dễ thuii nek:v
\(\dfrac{7}{x}=\dfrac{y}{1}\)
=> x.y = 7
*TH1: x = 1, y = 7
*TH2: x = -1; y = -7
*TH3: x = 7; y = 1
*TH4: x = -7; y = -1
Giải:
\(\dfrac{7}{x}=\dfrac{y}{1}\)
\(\Rightarrow x.y=1.7\)
\(\Rightarrow x.y=7\)
\(\Rightarrow x\) và \(y\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng giá trị:
x=-1 thì y=-7
x=-7 thì y=-1
x=1 thì y=7
x=7 thì y=1
Vậy \(\left(x;y\right)=\left(-1;-7\right);\left(-7;-1\right);\left(1;7\right);\left(7;1\right)\)
Chúc bạn học tốt!
Tìm tất cả các cặp số nguyên không âm thoả mãn: x-y=x2+xy+y2
Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)
Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)
Mà y là số nguyên không âm nên y = 0
Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy (x, y) = { (0; 0); (1; 0) }
Bài 1 : Tìm các cặp số nguyên x , y sao cho x = 6y và | x | - | y | = 60
Bài 2 : Tìm các cặp số nguyên a, b sao cho a khác b và | a | + | b | <2
Bài 3 : Cho dãy số 1 ; -2 ; 3 ; -4 ; 5 ; -6 ; 7 ; -8 ; 9 ; -10 . Chọn ra 3 số rồi đặt dấu cộng , dấu trừ giữi các số ấy . Tính ra giá trị nhỏ nhất và lớn nhất của số đó
Bài 1:
Thay \(x\) = 6y vào biểu thức ta có:
|6y| - |y| = 60
|5y| = 60
5.|y| = 60
|y| = 60 : 5
|y| = 12
\(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)
Kết luận:
Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-72; -12); (72; 12)