Cho 100 số tụ nhiên bất kỳ. CMR : Ta có thể chọn được ít nhất 15 số mà hiệu của 2 số tùy ý chia hết cho 7
cho 100 số tự nhiên bất kì. chứng minh rằng ta có thể chọn được ít nhất 15 số mà hiệu của 2 số tùy ý chia hết cho 7
Cho 100 số tự nhiên bất kì. Chứng minh rằng ta có thể chọn được ít nhất 15 số mà hiệu của hai số tùy ý chia hết cho 7.
CHÚNG TA CÓ TỔNG CỘNG 7 SỐ DƯ
TA LẤY 100 ĐỒNG DƯ VS 2 (MOD 7)MÀ 100/7=14(DƯ 2)
=>CHẮC CHẮN 2 SỐ ĐÓ SẼ CÙNG SỐ DƯ VS 14 SỐ TRONG CÁC SỐ DƯ
cho 100 số tự nhiên bất kì.Chứng minh rằng ta có thể chọn được ít nhất 15 số mà hiệu của 2 số tùy ý chia hết cho 7
Ta chia 100 số tự nhiên đã cho thành 7 nhóm tương ứng chia hết cho 7, chia cho 7 dư 1, 2, 3, 4, 5, 6.
Ta có: 14.7 = 98 < 100 nên sẽ có ít nhất một nhóm có số phần tử trong đó ít nhất là 15.
Chọn nhóm đó thì ta có đpcm. (do các số trong nhóm đó có cùng số dư khi chia cho 7 nên hiệu 2 số bất kì chia hết cho 7)
cho 100 STN bất kì.CMR: ta có thể chọn được ít nhất 15 số mà hiệu của 2 số tùy ý chia hết cho 7
Cho 100 số tự nhiên bất kì. Chứng minh rằng ta có thể chọn được ít nhất 15 số mà hiệu của hai số tùy ý chia hết cho 7
Cmr: trong 100 STN tùy ý bao giờ ta cũng chọn được 15 số mà hiệu của 2 số bất kì trong 15 số ấy chia hết cho 7
Ta biết rằng các số dư trong phép chia cho 7 thường nhận nhiều nhất là 7 giá trị.
Vì \(100=7.14+2\) nên bao giờ cũng chọn được 15 số mà hiệu hiệu của 2 số bật kì trong 15 số ấy chia hết cho 7
Từ 100 số nguyên tùy ý ta luôn có thể chọn được 15 số mà hiệu của hai số bất kì chia hết cho 7. Điều này đúng hay sai?
Nhớ ghi cả cách giải nữa nha!!!
Ta lấy 15 số đó chia cho 7 sẽ được các 7 loại số dư từ 0 đến 6
Ta có: 15:7=2 dư 1
Theo nguyên lí Điriclet sẽ có 2 số cùng số dư khi chia cho 7
=> hiệu 2 số sẽ chia hết cho 7
Vậy điều trên là đúng
1.Cho 5 số tự nhiên bất kì.CMR trong 5 số đó tồn tại 3 số có tổng chia hết cho 3
2.Cho 3 số nguyên tố lớn hơn 3.CMR tồn tại 2 số có tổng hoặc hiệu chia hết cho 2
3.CMR trong 12 số tự nhiên tùy ý, bao giờ ta cũng chọn đc 2 số mà hiệu của chúng chia hết cho 11
Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
Cho 2017 số tự nhiên bất kỳ . Lấy 7 số tùy ý từ 2017 số đó . Chứng minh rằng trong 7 số lấy ra có 2 số mà hiệu bình phương của chúng chia hết cho 11