tim x€z biêt x^2+5 chia het cho x+1
tim x thuoc z: x+4 chia het cho x-1 ;
2x-5 chia het cho 2x-1 ;
3x+1 chia het cho x-3 ;
x2 +2x+5 chia het cho x+1
a, tim x€Z biet (x-6) chia het cho (x-5)
b, tim x€Z, y€Z biet (x-1).(xy-5)=5
tim gia tri lon nhat cua A=2018-/x-7/-/y+2/
tim gia tri nho nhat cua B /x-500/+/x-300/
tim n thuoc Z,biet: a,3.n+2 chia het cho n-1; b, n^2 +5 chia het cho n+1
\(A=2018-\left|x-7\right|-\left|y+2\right|\)
Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)
\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)
Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)
Tham khảo~
tim x thuoc Z biet
a) (x^2+ 3x+9) chia het cho (x +3 )
b) (x^2 + 5) chia het cho (x-2)
a/ \(x^2+3x+9⋮x+3\)
\(\Leftrightarrow x\left(x+3\right)+9⋮x+3\)
vì x(x+3) chia hết cho x+3nên 9 chia hết cho x+3
=>\(x+3\inƯ\left(9\right)=\left(1;-1;3;-3;9;-9\right)\)
=>\(x\in\left(-12;-6;-4;-2;0;6\right)\)
b/ bạn phân tích thành x(x-2)+2(x-2)+9 rồi lm như trên nhé
chúc ban hk tốt thành công tg cs
a) Tim xThuoc Z
5 . (x/3-4) =15
2x+3 chia het cho x+1
b) Tim GTLN cua 7 phan (x+1)^2+1
c)Chung to neu a,b nguyen to thi a^2 -b^2 chia het cho 24
a) \(5\cdot\left(\frac{x}{3}-4\right)=15\)
\(\Leftrightarrow\)\(\frac{x-12}{3}=3\)
\(\Leftrightarrow x-12=9\)
\(\Leftrightarrow x=21\)
Vạy x=21
+) 2x+3 chia hét cho x+1
Bạn chia cột dọc 2x+3 : x+1 =2 dư 1
Vậy để 2x+3 \(⋮\) x+1 thì x+1 \(\in\) Ư(1)
Mà Ư(1)={1;-1}
=> x+1={1;-1}
*)TH1: x+1=1<=>x=0
*)TH2: x+1=-1<=>x=-2
Vậy x={-2;0} thì 2x+3\(⋮\) x+1
b)Tìm GTLN của \(\frac{7}{\left(x+1\right)^2+1}\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\)
=> \(\frac{7}{\left(x+1\right)^2+1}\le\frac{7}{1}=7\)
Tim x thuoc z
( 5x - 4) chia het ( 2x - 1 )
(X^2 + 1 ) chia het ( x +1)
( x^2 - 3x +5 ) chia het x-2
X^2 co nghia la x mu 2 tuong tu cac so con lai
Tim x thuoc Z, sao cho:
a) 2x-5 chia het cho x-1.
b) x+1 la uoc cua x2+7.
Bài giải
\(a,\text{ }\frac{2x-5}{x-1}=\frac{2\left(x-1\right)-1}{x-1}=\frac{2\left(x-1\right)}{x-1}-\frac{1}{x-1}=2-\frac{1}{x-1}\)
\(2x-5\text{ }⋮\text{ }x-1\text{ khi }1⋮\text{ }x-1\)\(\Leftrightarrow\text{ }x\inƯ\left(1\right)\)
\(\Rightarrow\orbr{\begin{cases}x-1=-1\\x-1=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{0\text{ ; }2\right\}\)
\(b,\text{ }x+1\text{ là ước của }x^2+7\text{ }\Rightarrow\text{ }x^2+7\text{ }⋮\text{ }x+1\)
Ta có : \(\frac{x^2+7}{x+1}=\frac{x\left(x+1\right)-\left(x+1\right)+8}{x+1}=\frac{\left(x-1\right)\left(x+1\right)+8}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{x+1}+\frac{8}{x+1}\)
\(=x-1+\frac{8}{x+1}\)
\(\text{ }x^2+7\text{ }⋮\text{ }x+1\text{ khi }8\text{ }⋮\text{ }x+1\text{ }\Rightarrow\text{ }x+1\inƯ\left(8\right)\)
Ta có bảng :
x + 1 | - 1 | 1 | - 2 | 2 | - 4 | 4 | - 8 | 8 |
x | - 2 | 0 | - 3 | 1 | - 5 | 3 | - 9 | 7 |
\(\Rightarrow\text{ }x\in\left\{-2\text{ ; }0\text{ ; }-3\text{ ; }1\text{ ; }-5\text{ ; }3\text{ ; }-9\text{ ; }7\right\}\)
tim x thuoc Z biet 6-3x chia het cho x+3 x2-4 chia het cho x+1
tim x thuoc Z biet
a,x^2+3x-13 chia het x+3
b,x^2 +3 chia het x-1
c,x-6 chia het x^2-1
a, Ta có:x^2+3x-13=(x^2+3x)-13
=x(x+3)-13
Vì (x+3) chia hết cho (x+3)=>x(x+3) chia hết cho x+3
Để: (x^2+3x-13) chia hết cho x+3 thì 13 phải chia hết cho x+3
=>(x+3) thuộc Ư(13)
Mà Ư(13)={0;13}
=>(x+3) thuộc {0;13}
=> x thuộc {-3;10}
b,c, giống câu a