tìm số nguyên x biết -210=(-1)+(-2)+(-3)+...+(-x+1)+(-x)
Tìm các số nguyên a,v,c,d,e,biết tổng của chúng bằng 0 và a+b=c+d=d+e=2
Tìm các số nguyên x,y,z biết x+y+z=0;x+y=3;y+z=-1
Tìm số nguyên x, biết: (x-1)(x-2)=0
x-1)(x-2)=0
⇒\(\left\{{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Tìm số nguyên x, biết: 2|x + 1|=10
2.|x + 1| = 10
| x + 1| = 10 : 2
|x + 1| = 5
* Trường hợp 1: x + 1 = 5
x = 5 – 1 hay x = 4
* Trường hợp 2: x + 1 = -5
x = - 5 - 1 hay x = -6
Vậy x = 4 hoặc x = -6
Tìm các số nguyên x biết:
(x+2) (x-1) > 0
Ta có các trường hợp:
+TH1: \(\left\{{}\begin{matrix}x+2>0\\x-1>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x>1\end{matrix}\right.\)\(\Leftrightarrow x>1\)
+TH2: \(\left\{{}\begin{matrix}x+2< 0\\x-1< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< -2\\x< 1\end{matrix}\right.\)\(\Leftrightarrow x< -2\)
Vậy.....
(x+2) (x-1)>0 thì nó có cả đống bạn ạ VD:
(10+2)x(11-1)= 120 > 0
Tìm số nguyên x biết:
2x-1 là bội x-3
Ta có:
\(2x-1\) là bội của \(x-3\Rightarrow2x-1⋮x-3\)
Lại có:
\(2x-1=2x-6+5=2\left(x-1\right)+5\)
Vì \(x\in Z\Rightarrow2\left(x-1\right)+5\in Z\) và \(2\left(x-1\right)⋮x-1\Rightarrow5⋮x-1\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(2\) | \(0\) | \(6\) | \(-4\) |
Vậy \(x\in\left\{2;0;6;-4\right\}\)
tìm số nguyên x biết 2(3x-2)=1^2+2^2+3^2
2(3x-2)=1^2+2^2+3^2
2(3x-2)=1+4+9
2(3x-2)=15
3x-2 =15:2
3x-2 =7,5
3x =7,5+2
3x =9,5
x =3.1(7) (loại)
=> x ko có giá trị (vì x ko thuộc Z)
2(3x-2) = 1+4+9 = 14
3x-2 = 14/2 = 7
3x = 7+2 = 9
x = 9/3 = 3
Vậy x = 3
Đặt A = 12 + 22 + 32
⇒ A = 1.1 + 2.2 + 3.3
⇒ A = 1.( 2 - 1 ) + 2.( 3 - 1 ) + 3.( 4 - 1 )
⇒ A = 1.2 - 1 + 2.3 - 2 + 3.4 - 3
⇒ A = ( 1.2 + 2.3 + 3.4 ) - ( 1 + 2 + 3 )
⇒ A = 20 - 6
⇒ A = 14
Ta có :
2.( 3x - 2 ) = 14 ⇒ 3x - 2 = 7 ⇒ 3x = 9
⇒ x = 3
Vậy x = 3
tìm x biết: -210=(-1)+(-2)+(-3)+........+ (-x-1)+(-x)
-210 = (-1) + (-2) + (-3) + ... + (-x - 1) + (-x)
=> -210 = -(1 + 2 + 3 + ... + x + 1 + x)
=> 210 = 1 + 2 + 3 + ... + x + x + 1
=> 210 = \(\frac{\left(x+1+1\right).\left(x+1\right)}{2}\)
=> 420 = (x + 2) . (x + 1)
=> 21 . 20 = (x + 2) . (x + 1)
=> (19 + 2) . (19 + 1) = (x + 2) + (x + 1)
=> x = 19.
Bài 1: Tìm x, biết 5 3.5 5 .2 2 3 2 2 x
Bài 2: Tìm x, biết: (7x-11)3 = 25.52 + 200
Bài 3: Tìm x biết : 2 15 2 15 x x 5 3
Bài 4: Tìm số tự nhiên x biết 8.6 + 288 : (x - 3)2 = 50
Bài 5: Tìm x: 22x – 1 + 6.28 = 14.28
Bài 6: Tìm số tự nhiên x biết:
a) 23x + 52x = 2(52 + 23) – 33 b) 260 : (x + 4) = 5(23 + 5) – 3(32 + 22)
c) (3x – 4)10 – 3 = 1021 d) (x2 + 4) (x + 2)
Bài 7: Tìm số tự nhiên x, biết: 5 .5 .5 1000...0: 2 x x x 1 2 18
Bài 8: Tìm số tự nhiên x biết: 2x 2x1 2x2 ... 2x2015 22019 8
Bài 9: Tìm x N biết :
a) 13 + 23 + 33 + ...+ 103 = ( x +1)2; b) 1 + 3 + 5 + ...+ 99 = (x -2)2
Bài 10: Tìm các số tự nhiên x, y sao cho (2x + 1)(y – 5) = 12
DẠNG 3: SO SÁNH BIỂU THỨC, LUỸ THỪA
Bài 11: So sánh hai tích sau mà không tính cụ thể giá trị của chúng:
a) A 123.123và B 124.122; b) A 987.984và B 986.985.
c) C = 345.350 và D = 348.353 d) P = 75.36 + 23 và Q = 36.77 – 64
e) E = 35.56 + 17 và F = 34.57 – 14
Bài 12. Không tính kết quả của biểu thức, hãy so sánh
a) A 2019.2021 và B 20202 b)
2021
2022
10 1
10 1
M
và
2022
2023
10 1
10 1
N
.
Bài 13: Cho A = 1 + 2012 + 20122 + 20123 + 20124 + … + 201271 + 201272 và
B = 201273 - 1. So sánh A và B.
Bài 14: Cho D 1 2 ... 22021. Chứng minh D 22022
Bài 15: Cho E = 6 +62 +...+ 62020. So sánh 5E + 6 với 361011
Bài 16: Cho S = 2.1+2.3 +2.32+2.32020. So sánh S + 2 với 4.91010
Bài 17: Cho S = 5.1+5.4 +5.42+5.42021 . So sánh 3S + 5 với 80. 16 1010
* Các bài toán về so sánh luỹ thừa
Loại 1: Biến đổi về cùng cơ số hoặc số mũ
Bài 1: Hãy so sánh:
a. 1619 và 825 b. 2711 và 818 . c) 1619 và 825 d) 6255 và 1257 .
Bài 2: Hãy so sánh:
a. 1287 và 424 b. 536 và 1124 c. 3260 và 8150 d. 3500 và 7300 .
PBT CLB Toán 6 Cô Yến -TNT
Bài 3: Hãy so sánh:
a) 3210 và 2350 b) 231 và 321 c) 430 và 3 24 . . 10
Bài 4: Hãy so sánh:
a) 32n và 23n * n N b) 5300 và 3500 .
Bài 5: Hãy so sánh:
a) 32 2 n n và 9n12 b) 256n và 16n5 (với n N )
Loại 2: Đưa về một tích trong đó có thừa số giống nhau
Bài 1: Hãy so sánh:
a) 202303 và 303202 . b) 2115 và 27 49 5 8 . . c)3.275 và 2435 .
Bài 2: Hãy so sánh:
a) 2015 2015 2015 2014 và 2015 2015 2016 2015 . b) 2015 2015 10 9 và 201610.
Bài 3: Hãy so sánh:
a) A 72 72 45 44 và B 72 72 44 43 . b) 3775 và 7150 .
Bài 4: Hãy so sánh:
a) 523 và 6 5 . 22 b) 7 2 . 13 và 216 c) 1512 và 81 125 3 5 . .
Bài 5: Hãy so sánh 9920 và 999910 .
Loại 3: So sánh thông qua một lũy thừa trung gian
Bài 1: Hãy so sánh 2 3 4 30 30 30 và 3 24 . 10 .
Bài 2: Hãy so sánh:
a) 2225 và 3151 b) 19920 và 200315 c) 291 và 536.
Bài 3: Hãy so sánh:
a) 9920 và 9 11 10 30 . b) 96142 và 100 23 . 93 .
Bài 4: Hãy so sánh:
a) 10750 và 7375 b) 3339 và 1121.
Bài 5: Hãy so sánh:
a) A 123456789 và B 567891234 . b) 111979 và 371320 .
Loại 4: So sánh thông qua hai lũy thừa trung gian
Bài 1: Hãy so sánh
a) 1720 và 3115 b) 19920 và 10024 c) 3111 và 1714 .
Bài 2: Hãy so sánh
a) 111979 và 371321 b) 10750 và 5175 c) 3201 và 6119 .
Bài 3: Chứng minh rằng: a) 2 5 1995 863 . b) 5 2 5 27 63 28 .
Tìm các số nguyên x biết:
(x+3) (x-2) < 0
Ta có các trường hợp sau:
+TH1: \(\left\{{}\begin{matrix}x+3>0\\x-2< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 2\end{matrix}\right.\)\(\Leftrightarrow-3< x< 2\)
+TH2: \(\left\{{}\begin{matrix}x+3< 0\\x-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< -3\\x>2\end{matrix}\right.\) (vô lý)
Vậy -3<x<2