cmr: 10^n + 18n -1 chia het cho 81 ( n la STN)
b) cmr 10^n+18n-1 chia hết cho 27
c) cmr 10^n+72n-1chia het cho 81
b) Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
c) 10^n+72n-1
=10^n-1+72n
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.
CMR A=10^n +18n chia hêt cho 81 (n la so tu nhien)
Chứng minh:
a) 2n + 11...1 chia het cho 3 ( 11...1 gom n chu so)
b) 10^n + 18n - 1 chia het cho 27
c) 10^n + 72n - 1 chia het cho 81
Cho so A=n(n-1)(n+1)(n^2+1) voi n thuoc N.
a)CMR A chia het cho 10
b)CMR chu so tan cung cua cac STN n va n^5 la nhu nhau
CMR : B = 10n + 18n - 1 chia het cho 27
10^n +18n - 1=10^n-1+18n=99..9(n chữ số 9)+18n
=9(11...1(n chữ số 9)+2n)
Xét 11...1(n chữ số 9)+2n=11...1- n+3n
Dễ thấy tổng các chữ số của 11..1(n chữ số 1) là n
=>11...1- n chia hết cho 3
=>11...1- n+3n chia hết cho 3
=>10^n +18n - 1 chia hết cho 27
tick nha
Chung minh rang A=10n+18n-1 chia het cho 27 ( n la so tu nhien)
Ta có : \(A=10^n+18n-1=10^n-1-9n+27n\)
\(=99...9-9n+27n\)( n c/s 9 )
\(=9\left(11...1-n\right)+27n\)( n c/s 1 )
Vì : \(11...1-n⋮3\Rightarrow9\left(11...1-n\right)⋮27\)
Mà : \(27n⋮27\Rightarrow A⋮27\)
Vậy ...
Ta có :
\(A=10^n+18n-1=10^n-1+18n-1+1\\ =\left(10^n-1\right)+18n\\ =\left(10^n-1^n\right)+18n\)
Ta có công thức :
\(a^m-b^m⋮a-b\) với mọi a;b thuộc R
\(\Rightarrow10^n-1^n⋮10-1\\ \Rightarrow10^n-1^n⋮9\\ \Rightarrow10^n-1-18n⋮9\left(\text{đ}pcm\right)\)
bạn Trần Quỳnh Mai ơi phải là n -1 chữ số 9 chứ
CMR:
a,10n+18n-1 chia hết cho 27
b,10n+7n-7 chia hết cho 81
a)10^n+18n-1=10^n-1+18n=999....99(n chu so 9)+18n
=9.(111...11(n chu so 9)+2n)
Xet 111...11(n chu so 9)+2n=111..11-n+3n
De thay tong cac chu so cua 111....11(n chu so 1) la n
=>111...11-n chia het cho 3
=>111...11-n+3n chia het cho 3
=>10^n+18n-1 chia het cho 27
cmr
a, 10n+18n-8 chia het cho 27
b, n7_n chia het cho 7
c,
bt2:chứng minh rằng:
1, Hai so a,b cung chia 3 rư r thi hieu cua chung chia het cho 3
2, 10n +18n -1 chia het cho 27
3, 102 +72n -1 chia het cho 81