cho tam giac ABC can tai A, KẺ AH vuong goc BC(H thuoc BC)
a, Chung minh goc BAH= CAH
b, cho AH=3 cm , BC= 8cm.tinh do dai AC
c, ke HE vuong goc AB, HD vuong goc AC. CM AE=AD
d, chung minh ED//BC
b,Từ a: tam giác BHC =tam giác CHA => BH=HC=8/2=4
Áp dụng địnhlí pytago vào tam giác vuông AHC => AC=5
c, Xét tam giác AHE và tam giác AHD =>tam giác AHE=tam giác AHD (gcg)
=>AE=AD
d,AE=AD => tam giác AED cân tại A => góc AED=(180-góc A)/2
tam giác ABC cân tại a =>góc ABC=(180 -góc A )/2
=>gócAED= gócABC=> ED //BC (ĐV)
a, tam giacs abc cân tại A =>AB=AC
=> tam giác BHA=tam giác CHA (cạnh huyền-cạnh góc vuông)
=> góc BAH=góc CAH
cau d ban lam ro ra hon duoc ko
minh ko hieu
cho tam giac ABC can tai A; AB=AC=5cm, BC=6cm. ke AH vuong goc voi BC
chung minh rang: HB=HC; BAH=CAH
tinh do dai AH
ke HD vuong goc voi AB; HE vuong goc voi AC. chung minh rang tam giac HDE la tam giac can
Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)
a) Do AH vuông góc với BC nên:
Góc AHB= Góc AHC=90 độ
Ta có: Góc BAH= 90 độ- góc B(1)
Góc CAH=90 độ- góc C(2)
Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)
Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH
Xét tam giác ABH và tam giác ACH, có:
Góc BAH= Góc CAH( CM trên)
Chung AH
Góc AHB=Góc AHC( Đều bằng 90 độ)
=> Tam giác ABH=Tam giác ACH( G-c-g)
Khi đó: HB=HC( Cặp cạnh tương ứng)
-------> ĐPCM
tam giac abc can tai a .ke Ah vuong goc voi BC (H thuoc BC).Chung minh :
HB=HC
Goc Bah=Goc CAH
hinh tu ke nha
vi tam giac bc can tai a nen goc b = goc c
xet am giac abh va tamgaic ach co
goc ahb= goc ahc (=90do)
goc b=gocc(cmt )
ah canh chung
tam giac abh=am giac ach
vayhb= hc(2 canh tuong ung)
a, xét tam giác ahb và ahc có :
ab=ac (gt)
goác ahb=ahc=90độ
ah là cạnh chung
suy ra tam giác ahb = tam giác ahc ( cạnh huyền - cạnh góc vuông)
suy ra hb = hc ( 2 cạnh tương ứng ) (đpcm)
b,vì tam giác ahb=tam giác ahc suy ra góc bah =góc cah ( cặp góc tương ứng) (đpcm)
cho tam giac ABC vuong tai A . Ke AH vuong goc voi BC tai H. ke tia phan giac cua goc BAH tai D
a, CMR goc BAH =goc C, goc CAH =goc B
b CMR goc DAC= goc ADC
c ke tia phan giac cua goc C cat AD tai K . CMR CK vuong goc voi AD
cho tam giac ABC co AB bang AC bang 5 cm ; BC bang 6 cm . ke AH vuong BC , h thuoc bc
a , chung minh HB bang HC va BAH bang CAH
B, tinh do dai AH
c, ke HM vuong AB tai M , ke HN vuong AC tai N . Chung minh tam giac MHN la tam giac can
d, ke tia Bx vuong BA , ke Cy vuong AC ; hai tia Bx va Cy cat nhau tai I .Chung minh AI vuong goc voi BC
tu ve hinh :
a, AC = AB => tamgiac ABC can tai A (dn)
=> goc ABC = goc ACB (tc)
xet tam giac ABH va tamgiac ACH co : goc AHC = goc AHB do AH | BC (gt)
=> tam giac ABH = tamgiac ACH (ch - gn) (1)
b, tamgiac AHB vuong tai H do AH | BC (gt)
=> AB2 = AH2 + BH2
(1) => BH = HC ma BC = 6 (gt)=> BH = 3
BA = 5 (gt)
=> AH2 = 52 - 32
=> AH2 = 16
=> AH = 4 do AH > 0
c, xet tamgiac BMH va tamgiac NCH co : goc BMH = goc NCH = 90o do MH | AB va HN | AC (gt)
goc ABC = goc ACB (cmt) va BH = HC (cmt)
=> tamgiac BMH = tamgiac NCH (ch - gn)
=> MH = HN (dn)
=> tamgiac MNH can tai H (dn)
d, cm theo truong hop ch - gn di, moi tay qa
Giải
( Bạn tự vẽ hình nhé )
a, \(AB=AC\) \(\Rightarrow\)\(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta ABH\) và \(\Delta ACH\) có : \(\widehat{AHC}=\widehat{AHB}\) do \(AH\perp BC\)
\(\Delta ABH=\Delta ACH\) (1) [ đpcm]
b, \(\Delta AHB\) vuông tại H do \(AH\perp BC\)
\(\Rightarrow AB^2=AH^2+BH^2\)
Từ (1) suy ra BH = HC mà BC = 6 nên BH = 3
\(\Rightarrow\)BA = 5
\(\Rightarrow AH^2=5^2-3^2\)
\(\Rightarrow AH^2=25-9\)
\(\Rightarrow AH^2=16\)
\(\Rightarrow AH=\sqrt{16}\)
\(\Rightarrow AH=4cm\)
\(\Rightarrow\) AH = 4cm do AH > 0
c, Xét \(\Delta BMH\) và \(\Delta NCH\) có :\(\widehat{BMH}=\widehat{NCH}=90^0\) do \(MH\perp AB\) va \(HN\perp AC\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)và \(BH=HC\)
\(\Rightarrow\Delta BHM=\Delta NCH\)
\(\Rightarrow MH=HN\)
\(\Rightarrow\Delta MNH\) cân tại H \(\left(đpcm\right)\)
d, ...
CHO TAM GIAC ABC CAN TAI A, CO AB=AC=5CM, BC=8CM. KE AH VUONG GOC BC(H THUOC BC)CHUNG MINH
A) HB=HC VA GOC BAH=GOC CAH
B) TINH AH
C) GOI D VA E LA CHAN DUONG VUONG GOC KE TU H DEN AB VA AC CHUNG MINH TAM GIAC HDE CAN
cho tam giac abc can tai a( ab= ac). ke ah vuong goc ba ( h thuoc bc)
a chung minh am giac abh= am giac ach
b chung minh hb=hc va goc bah = goc cah
c ke hd vuong goc ab ( d thuoc ab), he vuong goc ac( e thuoc ac) . chung minh tam giac ade can
TRÔNG MÌNH VẬY THÔI NHƯNG LÀ FAN RUỘT CỦA SẾP TÙNG ĐẤY !
SKY ZÔ KẾT BẠN NHA !!!!!!!!!!!
VÌ SẾP TÙNG MUÔN NĂM !!!!!!!
Chỗ câu hỏi của người ta cmt gì liên quan quá vậy @SN ?
a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:
\(AH\): chung
\(\widehat{AHB}=\widehat{AHC}=90\)độ (gt)
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)
b) Chứng minh câu a \(\Rightarrow HB=HC\)(hai cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
c) Xét \(\Delta ADH\)và \(\Delta AEH\)có:
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
\(AH\): chung
\(\widehat{ADH}=\widehat{AEH}=90\)độ (gt)
\(\Rightarrow\Delta ADH=\Delta AEH\left(g.c.g\right)\)
\(\Rightarrow DA=EA\)(hai cạnh tương ứng)
\(\Rightarrow\Delta ADE\)cân tại \(A\)
cho tam giac can ABC co AB=AC=5 cm, BC=8 cm . Ke AH vuong goc voi BC(h thuoc BC)
a) Chung minh : HB =HC va goc CAH= goc BAH; b) Tinh do dai AH
c) Ke HD vuong goc voi AB ( D thuoc AB), ke HE vuong goc voi AC(E thuoc AC). Chung minh : DE//BC
a) Xét 2 tam giác vuông AHB và tam giác AHC có:
AB = AC (gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)
=>HB = HC (2 cạnh tương ứng)
=> góc A1= góc A2 (2 góc tương ứng)
b) Ta có : BC = HB + HC
mà HB = HC (cmt)
BC = 8 (cm)
=> HB = HC = BC/2 = 8/2= 4 (cm)
Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:
AB^2 = AH^2 + HB^2
hay 5^2 = AH^2 + 4^2
=> AH = 5^2 - 4^2 =25 - 16= 9
=> AH = căn bậc 2 của 9 = 3 (cm)
c)Xét 2 tam giác vuông BHD và tam giác CHE có:
HB = HC (cmt)
Góc B = góc C ( vì tam giác ABC cân tại A)
=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)
=> BD= CE (2 cạnh tương ứng)
Xét 2 tam giác ADI và tam giác AEI có:
góc A1 = góc A2 (cmt)
AI là cạnh chung
AD =AE ( vì AB = AC; BD = CE)
=> tam giác ADI = tam giác AEI (c-g-c)
=> góc I1 = góc I2 (2 góc tương ứng)
mà góc I1 + góc I2 = 180 độ
=> góc I1 = góc I2 = 180/ 2= 90 (độ)
=> AI vuông góc với DE
=> AH cũng vuông góc với DE
mặt khác: AH lại vuông góc với BC
=> DE // BC (đpcm)
cho tam giac ABC co AB< AC co 3 goc nhon . Ke AH vuong goc BC tai H . Ve ra phia ngoai tam giac ABC cac doan thang BD vuong goc AB , BD = AB ; CE vuong goc AC , CE= AC . Ke DM vuong goc BC tai M ; EN vuong goc BC tai N
a, so sanh :goc DBM va goc BAH ; goc ECN va goc CAH
b, chung minh DM = BH , EN = CH
ve hinh r chung minh theo truong hop 2 cgv