Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Công Tùng
Xem chi tiết
Lữ Phúc Khánh Giang
19 tháng 2 2017 lúc 19:04

Bạn ơi kết bạn đí rồi mình giải cho!

Đinh Thị Oánh
19 tháng 2 2017 lúc 19:17

ta có ucln của 12m+1, 30n+2 =d

=> (12n+1)chia hết cho d thì 5(12n+1) chia hết cho d hay 60n+5 chia hết cho d

30n+2 : d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d 

suy ra hiệu của 60n+5 và 60n+4 chia hết cho d hay 1 chia hết cho d => d là ước của 1

suy ra d bằng 1 

suy ra phân số trên là tối giản

nguyễn thị nguyệt
19 tháng 2 2017 lúc 19:22

\(giải:\)giả sử ƯCLN(12n+1.30n+2)=d

=>  ( 12n+1) chia hết cho d => 5(12n+1) chia hết cho d => 60n +5 chia hết cho d

  \(và\)(30n+2) chia hết cho d => 2(30n+2) chia hết cho d => 60n + 4 chia hết cho d

=>  (60n + 5) - (60n +4) chia hết cho d

=>  60n +5 -60n -4 chia hết cho d

=> 1 chia hết cho d 

=> d thuộc Ư(1)

=> ƯCLN ( 12n+1,30n+2)=1

=>\(\frac{12n+1}{30n+2}\)\(là\)\(phân\)\(số\)\(tối\)\(giản\)

k cho mình nha, ai k cho mình thì mình k lại

chúc ban học tốt

Đỗ Thị Thanh Lương
Xem chi tiết
hận đời vô đối
Xem chi tiết
Đinh Đức Hùng
20 tháng 2 2016 lúc 11:02

Gọi d là ƯCLN ( 12n+1; 30n+2 )

=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )

=> 30n + 2 ⋮ d => 2.( 30n + 2 ) ⋮ d => 60n + 4 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 60n + 5 ) - ( 60n + 4 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 12n + 1 ; 30n + 2 ) = 1 nên 12n+1/30n+2 là p/s tối giản 

Cô bé mùa đông
20 tháng 2 2016 lúc 11:02

Gọi d là ước chung của 12n+1 và 30n+2 ta có:

5.(12n+1)-2.(30n+2)=60n+5-60n-4=1 chia hết cho d

Vậy d=1 nên 12n+1 và 30n+2 là hai số nguyên tố cùng nhau, do đó \(\frac{12n+1}{30n+2}\) là phân số tối giản

Đinh Thị Ánh
Xem chi tiết
Minh Triều
10 tháng 1 2016 lúc 18:28

Gọi d là UCLN (12n+1 và 30n+2)

=>12n+1 chia hết cho d và 30n+2 chia hết cho d

=>5.(12n+1)=60n+5 chia hết cho d và 2.(30n+2)=60n+4 chia hết cho d

=>(60n+5)-(60n+4)=60n+5-60n-4=1 chia hết cho d

=> d là 1 

=>12n+1/30n+2 tối giản

Minh Hiền
10 tháng 1 2016 lúc 18:28

Đặt ƯCLN(12n+1, 30n+2) = d

=> (12n+1)-(30n+2) chia hết cho d

=> 5.(12n+1)-2.(30n+2) chia hết cho d

=> 60n+5-60n-4 chia hết cho d

=> 1 chia hết cho d

=> d = 1 

=> ƯCLN (12n+1, 30n + 2) = 1

=> \(\frac{12n+1}{30n+2}\)tối giản (đpcm).

Nguyễn Ngọc Quý
10 tháng 1 2016 lúc 18:28

Đặt UCLN(12n + 1 ; 30n + 2) = d

12n + 1 chia hết cho d => 60n + 5 chia hết cho d

30n + 2 chia hết cho d => 60n + 4 chia hết cho d

=> [(60n + 5) - (60n +4)] chia hết cho d

1 chia hết cho d => d = 1

Vậy UCLN(12n  + 1 ; 30 n + 2) = 1

< = > \(\frac{12n+1}{30n+2}\) là phân số tối giản 

Nguyễn Thùy Trang
Xem chi tiết
Đường Quỳnh Giang
25 tháng 1 2019 lúc 17:32

Gọi (12n + 1; 30n + 2) = d

=> 12n + 1 chia hết cho d  

      30n + 2 chia hết cho d

Xét hiệu:  5(12n + 1) - 2(30n + 2)  chia hết cho d

           <=>  60n + 5 - 60n - 4   chia hết cho d

           <=>   1  chia hết cho d

=> d = 1

Vậy (12n + 1)/(30n + 2) là phân số tối giản

Lâm Khánh Linh
18 tháng 5 2020 lúc 22:33

Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d, ta sẽ chứng minh d = 1.

Ta có : (12n + 1)⋮ d nên 2.(30n + 2)⋮ d hay (60n + 4)⋮ d.

=> [(60n + 5) - (60n + 4)⋮ d.

=> (60n + 5 - 60n - 4)⋮ d.

=> 1⋮ d => d = 1.

Hay 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau.

Vậy : phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản.

Khách vãng lai đã xóa
Chocolate friendship
Xem chi tiết
soyeon_Tiểu bàng giải
8 tháng 8 2016 lúc 9:06

Gọi d = ƯCLN(12n + 1; 30n + 2) (d thuộc N*)

=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d

=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d

=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d

=> (60n + 5) - (60n + 4) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(12n + 1; 30n + 2) = 1

=> phân số 12n + 1/30n + 2 là phân số tối giản

luong thanh long
27 tháng 4 2017 lúc 21:26

cm 2 so do ngto cung nhau la dc

TAKASA
17 tháng 8 2018 lúc 8:38

Bài giải : 

Gọi d = ƯCLN(12n + 1; 30n + 2) (d thuộc N*)

=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d

=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d

=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d

=> (60n + 5) - (60n + 4) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(12n + 1; 30n + 2) = 1

=> Phân số 12n + 1/30n + 2 là phân số tối giản

Phan Tùng Dương
Xem chi tiết
VRCT_Ran Love Shinichi
29 tháng 5 2018 lúc 8:52

Gọi d là ƯC(12n+1,30n+2). Ta có :

( 12n + 1 ) \vdots d => 5.( 12n + 1) \vdots d hay ( 30n + 5 ) \vdots d

( 30n + 2 ) \vdots d => 2 . ( 30n + 2 ) \vdots d hay ( 30n + 4 ) \vdots d

=> ( 30n + 5 ) - ( 30n + 4 ) = 1

               => d = 1

Vậy : \frac{12n+1}{30n+2}  là phân số tối giản 

Edogawa Conan
29 tháng 5 2018 lúc 8:54

Ta có : \(\frac{12n+1}{30n+2}\)là phân số tối giản <=> ƯCLN(12n + 1; 30n + 2) \(\in\) {1; -1}

Gọi ƯCLN(12n + 1; 30n + 2) là d

=>   \(12n+1⋮d\)     =>  \(5\left(12n+1\right)⋮d\)            =>      \(60n+5⋮d\)

         \(30n+2⋮d\)          \(2\left(30n+2\right)⋮d\)                      \(60n+4⋮d\)

=> (60n + 5) - (60n + 4) = 1 \(⋮\)d => d \(\in\){1; -1}

Vậy \(\frac{12n+1}{30n+2}\)tối giản

Arima Kousei
29 tháng 5 2018 lúc 8:54

Gọi  \(ƯCLN\left(12n+1;30n+2\right)\)là \(d\left(d\in N^∗\right)\)

Ta có : 

\(12n+1⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow60n+5⋮d\left(1\right)\)

\(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow60n+4⋮d\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Nên \(12n+1;30n+2\)là 2 số nguyên tố cùng nhau 

\(\Rightarrow\frac{12n+1}{30n+2}\)là p/s tối giản \(\left(đpcm\right)\)

Vũ Thành Phong
Xem chi tiết
Lê Anh Tú
21 tháng 6 2017 lúc 16:41

Gọi d là ƯCLN của tử và mẫu .

=>12n +1 chia hết cho d               60n+5 chia hết cho d

=> 30n +2chia hết cho d               60n +4 chia hết cho d

=> (60n+5) -(60n+4) chia hết cho d

=>1 chia hết cho d

=> d=1 => điều phải chứng minh (đpcm) 

Cecilia Phạm
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
10 tháng 6 2017 lúc 6:06

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d 

<=> 5(12n + 1) chia hết cho d  , 2(30n + 2) chia hết cho d 

<=> 60n + 5 chia hết cho d  , 60n + 4 chia hết cho d 

=> (60n + 5) - (60n + 4) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 

Vậy ƯCLN của 12n + 1 và 30n + 2 = 1

Do đó phân số \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)

Nguyễn Hoàng Vinh Sang
10 tháng 6 2017 lúc 6:58

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d, 30n + 2 chia hết cho d

<=> 5(12n + 1) chia hết cho d, 2(30n + 2) chia hết cho d

<=> 60n + 5 chia hết cho d, 60n + 4 chia hết cho d

=> (60n + 5) - (60n + 4) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ƯCLN của 12n +1 và 30n +2 = 1

Do đó phân số : \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)  .

Chúc bạn học tốt !

Cecilia Phạm
10 tháng 6 2017 lúc 8:35

thanks bạn