Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hotboy2002
Xem chi tiết
hotboy2002
Xem chi tiết
Descendants of the sun
14 tháng 2 2016 lúc 21:08

3 năm nữa anh hotdog2002 nhé

hotboy2002
Xem chi tiết
hotboy2002
Xem chi tiết
Trần Đức Thắng
28 tháng 1 2016 lúc 21:54

Ta cm BĐT :

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

<=> \(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\ge0\)

<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng với mọi a ; b; c )

Dấu '' = '' BĐT xảy ra khi a =b =c 

(*) ÁP dụng BĐT với \(a=x^2;b=x;c=1\) ta có

( VẾ trái ) = \(\left(x^2+x+1\right)^2\le3\left[\left(x^2\right)^2+x^2+1\right]=3\left(x^4+X^2+1\right)=\left(vế\right)phải\)

Dấu ' = '' xảy ra khi \(x^2=x=1\Leftrightarrow x=1\)

Vậy pt có n* duy nhất là 1 

Thái Dương Lê Văn
Xem chi tiết
Nguyễn Tuấn
20 tháng 3 2016 lúc 18:42

nhân chéo

x^2+xm+2x+x+m+2=x^2-xm+x

=>2xm+2x+m+2=0

=>2x(m+1)+m+2=0

để pt vô nghiệm thì m+1=0=>m=-1

Ngô Trần Vũ Khang
Xem chi tiết
Phác Tú Anh
Xem chi tiết
Hoàng Mỹ Linh
Xem chi tiết
Vongola Famiglia
21 tháng 7 2017 lúc 18:38

a đề sai hay sao mà vô nghiệm ?

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VP^2=\left(\sqrt{2x+1}+\sqrt{17-2x}\right)^2\)

\(\le\left(1+1\right)\left(2x+1+17-2x\right)=36\)

\(\Rightarrow VP^2\le36\Rightarrow VP\le6\)

Lại có: \(VT=x^4-8x^3+17x^2-8x+22\)

\(=\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6\ge6\)

Thấy: \(VT\le VP=6\)\(\Rightarrow VT=VP=6\)

\(\Rightarrow\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6=6\)

Suy ra x=4

ko hiểu chỗ nào ib nhé

Minh Quân Nguyễn Huy
1 tháng 4 2019 lúc 21:41

lời giải của bạn trên có 1 xíu sai nhé

Là BĐT Bu-nhi-a Cốp-xki chứ ạ ?

hotboy2002
Xem chi tiết