Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Vũ Mai Anh
Xem chi tiết
Yến Phạm
Xem chi tiết
Phan Hà Linh
25 tháng 1 2016 lúc 13:59

xí nha!đây ko phải toán lớp 5 nha bạn !

Yến Phạm
27 tháng 1 2016 lúc 14:08

cô giáo mình ra đề như vậy mà

Lê Thái Thảo Nghi
Xem chi tiết
Nguyễn Huệ Lam
21 tháng 6 2016 lúc 15:56

\(=\frac{1}{1.3}.\frac{1}{2.4}...\frac{1}{9.11}=\frac{1}{1.2.3^2...9^2.10.11}\)

Nguyễn Trần Dinh
Xem chi tiết
Park ji yeon
19 tháng 3 2017 lúc 11:13

bài này lớp 6 tui gặp nè ^-^

phan tran vy lan
Xem chi tiết
Itsuka Hiro
22 tháng 7 2015 lúc 13:28

Làm lại đề cho:

\(\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot\left(\frac{1}{16}-1\right)...\left(\frac{1}{81}-1\right)\cdot\left(\frac{1}{100}-1\right)\)

Tính nhẩm

Nguyễn Thị Dung
7 tháng 4 2019 lúc 12:13

TOI KO BIET

Hoàng Thị Thanh Thảo
Xem chi tiết
Arima Kousei
14 tháng 5 2018 lúc 15:14

Ta có :

 \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)

\(\Rightarrow A>\frac{1}{2^2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{11}\)

\(\Rightarrow A>\frac{65}{132}\left(đpcm\right)\)

Chúc bạn học tốt !!!! 

Nguyen Duc Trung Thanh
Xem chi tiết
ST
4 tháng 5 2017 lúc 19:18

A = \(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}\)

\(\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\right)\)

Ta có: \(\frac{1}{3^2}>\frac{1}{3.4}\)

\(\frac{1}{4^2}>\frac{1}{4.5}\)

.........

\(\frac{1}{10^2}>\frac{1}{10.11}\)

\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\right)\)

\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{11}\right)=\frac{1}{4}+\frac{8}{33}=\frac{65}{132}\)

Vậy A > 65/132

Nguyễn Quốc Khánh
Xem chi tiết
Minh Nguyệt channel
Xem chi tiết
Wall HaiAnh
6 tháng 5 2018 lúc 18:20

Ta có:
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(\Leftrightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)

\(\Leftrightarrow A>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)

\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{11}\)

\(\Leftrightarrow A>\frac{9}{22}\)

Ta lại có:

\(\frac{9}{22}=\frac{9.11}{22\cdot11}=\frac{99}{132}\)

Ta thấy: 99>65

\(\Rightarrow\frac{99}{132}>\frac{65}{132}\)

\(\Rightarrow A>\frac{65}{132}\)

Vậy \(A>\frac{65}{132}\left(đpcm\right)\)

Vampire Princess
6 tháng 5 2018 lúc 18:51

\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)

\(A=\frac{1}{4}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)

\(A>\frac{1}{4}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

\(A>\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)

\(A>\frac{1}{4}+\frac{1}{3}-\frac{1}{11}\)

\(A>\frac{33}{132}+\frac{44}{132}-\frac{12}{132}\)

\(A>\frac{65}{132}\)