Goi a,b,c la 3 do dai cua 3 canh trong tam giac. Va biet (a+b)(b+c)(a+c)=8abc .Chung minh rang tam giac da cho la tam giac deu
Do dai 3 canh cua tam giac ABC la a,b,c thoa man dieu kien
(a-b)2+(b - c)2 = 0
Chung minh tam giac ABC la tam giac deu.
do (a-b)2\(\ge\)0 ;(b-c)2\(\ge\)0
\(\Rightarrow\)(a-b)2+(b-c)2\(\ge\)0
mà (a-b)2+(b-c)2=0 (đề bài cho)
\(\Rightarrow\)(a-b)2=0;(b-c)2=0
\(\Rightarrow\)a-b=b-c=0
\(\Rightarrow\)a=b=c
Vậy tam giác ABC đều
giai ho minh bai nay voi
cho a,b,c la do dai 3 canh tam giac va an;bn;cn cung la do dai 3 canh tam giac voi n la so nguyen duong. Chung minh rang 2 trong 3 so a,b,c bang nhau
a) Goi a,b,c la do dai ba canh cua mot tam giac thoa man a3 + b3 + c3 = 3abc. Chung minh do la tam giac deu
b) Cho x y z duong va x+y+z = 1. Chung minh \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
Từ a3 + b3 + c3 = 3abc
<=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0
<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0
<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2) - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\left(loại\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
=> tam giác đó là tam giác đều
b) Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
CM đúng (tự cm tđ)
Ta có: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}=9\)(vì x + y + z = 1)
Dấu "=" xảy ra <=> x = y = z = 1/3
a) Vì a, b, c là độ dài ba cạnh của một tam giác => a, b, c > 0
Ta có : a3 + b3 + c3 = 3abc
<=> a3 + b3 + c3 - 3abc = 0
<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0
<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
Dễ thấy không thể xảy ra trường hợp a + b + c = 0 vì a, b, c > 0
Xét TH còn lại ta có :
a2 + b2 + c2 - ab - ac - bc = 0
<=> 2(a2 + b2 + c2 - ab - ac - bc) = 2.0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ac + a2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)
Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(c-a\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)
=> Tam giác đó là tam giác đều ( đpcm )
b) Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :
\(VT\ge\frac{\left(1+1+1\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=\frac{9}{1}=9\)( do GT x + y + z = 1 )
=> đpcm
Dấu "=" xảy ra <=> x = y = z = 1/3
Cho tam giac ABC deu co canh dai 12cm, goi M la trung diem cua BC, lay diem D tren canh AB, diem E tren canh AC sao cho AD = 3cm, AE = 8cm
a) chung minh tam giac MBD dong dang voi tam giac ECM
b) tinh goc DME va ty so ME/MD
c) chung minh tam giac MBD dong dang voi tam giac EMD
d) chung minh DM la tia phan giac cua goc BDE
Cho tam giac ABC, M la trung diem canh BC .Dla diem bat ki tren tia doi cua tia BA .Goi h va K lan luot la hinh chieu cua B va C tren duong thang DM .Goi G la trong tam cua tam giac ABC .Chung minh rang G la trong tam cua tam giac
AHK
cho a,b,c la do dai 3 canh cua mot tam giac thoa man dieu kien \(\sqrt{a+b-c}+\sqrt{b+c-a}+\sqrt{c+a-b}=\sqrt{a}+\sqrt{b}+\sqrt{c}\)
chung minh a,b,c la 3 canh cua mot tam giac deu
cho tam giac abc co A=90 do AC>AB ke AH vuong goc voiBC tren canh BC lay điem D sao choHD=HB.Ke CE vuong goc voi AD keo dai. c/m rang :a)CB la phan giac cua goc ACE .b) Goi giao diem AH va CE tai K. c/m KD//AB. c)Tim dieu kien cua tam giac ABC de tam giac ACK deu
Cho nua duong tron tam O , ban kinh R , duong kinh AB. D la diem thuoc nua duong tron sao cho DA > DB . Goi DH la duong cao cua tam giac DAB . Biet DH = 6cm , HB = 4,5 cm
a) Chung minh tam giac ADB vuong , tinh do dai DB , DA
b) Goi G la trung diem cua BD . tia OG cat tiep tuyen tai B cua duong tron tai F . CHung minh FD la tiep tuyen va goc DAF = Goc BAG
c) Doan AF cat DO , DH thu tu tai I , P . Cm dien tich tu giac BPIO va dien tich tam giac DIA bang nhau
Trần Nguyễn Bảo QuyênLoverstthAki TsukiAkai Haruma@buithianhtho
Cho nua duong tron tam O , ban kinh R , duong kinh AB. D la diem thuoc nua duong tron sao cho DA > DB . Goi DH la duong cao cua tam giac DAB . Biet DH = 6cm , HB = 4,5 cm
a) Chung minh tam giac ADB vuong , tinh do dai DB , DA
b) Goi G la trung diem cua BD . tia OG cat tiep tuyen tai B cua duong tron tai F . CHung minh FD la tiep tuyen va goc DAF = Goc BAG
c) Doan AF cat DO , DH thu tu tai I , P . Cm dien tich tu giac BPIO va dien tich tam giac DIA bang nhau