Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Thái Thịnh
11 tháng 2 2020 lúc 14:37

Hai số lẻ liện tiếp có dạng 2n + 1 và 2n + 3 ( n thuộc N )

Đặt d thuộc ƯC ( 2n + 1; 2n + 3 ) ( d thuộc N* ) => 2n + 1 chia hết cho d và 2n + 3 chia hết cho d

Vậy ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d <=> 2 chia hết cho d thuộc Ư( 2 ) <=> d thuộc {1; 2}

Nhưng d khác 2 vì d là ước của số lẻ. Vậy d = 1

=> Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau

Khách vãng lai đã xóa
T.Anh 2K7(siêu quậy)(тoá...
11 tháng 2 2020 lúc 14:37

Gọi 2 số lẻ liên tiếp là:2k+1;2K+3\(\left(k\inℕ\right)\)

Gọi (2k+1,2k+3)=d\(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2k+1⋮d\\2k+3⋮d\end{cases}}\)

\(\Rightarrow\left(2k+3\right)-\left(2k+1\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)

Vì 2k+1 và 2k+3 lẻ nên chúng không chia hết cho 2 do đó d=1

Suy ra (2k+1,2k+3)=1 hay 2k+1 và 2k+3 nguyên tố cùng nhau(đpcm)

Khách vãng lai đã xóa
Thiên Hoàng
Xem chi tiết
Khánh Hạ
1 tháng 3 2018 lúc 21:10

2 số lẻ liên tiếp có dạng 2n + 1 và 2n + 3( n \(\in\) N )

Gọi D là ước số chung của chúng.Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D

Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D

Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ .

Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau

Nguyễn Anh Quân
1 tháng 3 2018 lúc 21:12

Gọi 2 số lẻ liên tiếp là 2k+1;2k+3 ( k thuộc N )

Gọi ƯCLN (2k+1;2k+3) = d ( d thuộc N sao )

=> 2k+1 và 2k+3 đều chia hết cho d

=> 2k+3-(2k+1) chia hết cho d

=> 2 chia hết cho d

=> d = 1 hoặc d = 2 ( vì d thuộc N sao )

Mà 2k+1 lẻ nên d lẻ => d = 1

=> ƯCLN (2k+1;2k+3) = 1

=> ĐPCM

Tk mk nha

Dương Đình Hưởng
1 tháng 3 2018 lúc 21:17

Gọi 2 số lẻ liên tiếp là 2a+ 1 và 2a+ 3( a\(\in\) Z)

Gọi ƯC( 2a+ 1; 2a+ 3)= d( d\(\in\) N*; d\(\ne\) 0)

=> 2a+ 1\(⋮\) d; 2a+ 3\(⋮\) d.

=>( 2a+3)-( 2a+ 1)\(⋮\) d.

=> 2a+ 3- 2a- 1\(⋮\) d.

=> 2\(⋮\) d.

=> d\(\in\){ -2; -1; 1; 2}.

Vì 2a+ 1 không chia hết cho -2; 2.

=> d khác -2; 2.

=> d\(\in\){ -1; 1}

=> 2a+1; 2a+ 3 nguyên tố cùng nhau

=> 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau.

Vây 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau.

Nguyễn Như Quỳnh
Xem chi tiết
Yoshida Ayumi
17 tháng 4 2017 lúc 9:23

Gọi d là ước nguyên tố của n và n+2.

theo bài ra, ta có: n chia hết cho d

                          n+2 chia hết cho d

    Suy ra n+2-n chia hết cho d

                    2 chia hết cho d

Suy ra d thuộc ước của 2={1;2}

Vì n và n+2 là số lè nên ko chia hết cho 2.

Suy ra d=1.

Vậy hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.

Nhớ ks nha. Bài này mình làm rồi. Đúng 100% luôn đó.

                         ^.^

danh duong
17 tháng 4 2017 lúc 8:54

vì các số lẻ liên tiếp k chia hết cho số nào cả 

minhanh
17 tháng 4 2017 lúc 9:08

Gọi số lẻ thứ nhất là n, số lẻ thứ hai là n+1, ƯC(n,n+1)=a

Ta có n \(⋮\)a (1)

         n + 1 \(⋮\)a (2)

Từ (1) và (2) => n + 1 - n \(⋮\)a

                   => 1\(⋮\)a

                   => a = 1

                   => ƯC(n,n+1) = 1

                   => n, n+1 là hai số nguyên tố cùng nhau

Vậy hai số tự nhiên liên tiếp là hai số nguyên tố cùng nhau

- Ủng hộ -

~minhanh~

vinhlop6dcl
Xem chi tiết
phung viet hoang
28 tháng 2 2015 lúc 20:43

2 số lẻ liên tiếp có dạng 2n + 1 và 2n + 3( n \(\in\) N )

Gọi D là ước số chung của chúng.Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D

Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D

Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ .

Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau!

Hoàng Quỳnh Như
Xem chi tiết
I am➻Minh
12 tháng 1 2021 lúc 20:16

Gọi 2 số lẻ liên tiếp là 2k+1;2k+3

Gọi ƯC(2k+1;2k+3)=d

=> \(\hept{\begin{cases}2k+1⋮d\\2k+3⋮d\end{cases}}\)

=> (2k+3)-(2k+1)\(⋮\)d

=> 2\(⋮\)d

=> d=1;d=2

Mà 2k+1 và 2k+3 là 2 số lẻ

=> 2k+1 và 2k+3 ko chia hết c ho 2

=> d=1

Vậy.......

Khách vãng lai đã xóa
Sasuke vs Naruto
Xem chi tiết
Trần Việt Hoàng
31 tháng 1 2016 lúc 20:14

Thằng ngu có khi biết

Minh Tuấn Nguyễn
Xem chi tiết
Nguyễn Hưng Phát
4 tháng 2 2016 lúc 20:10

Gọi 2 số đó là:n+1 và n+3

Đặt UCLN(n+1,n+3)=d

Ta có:n+1 chia hết cho d

n+3 chia hết cho d

=>(n+3)-(n+1) chia hết cho d

=>2 chia hết cho d

=>d\(\in\)Ư(2)={1,2}

Mà n+1 và n+3 là số lẻ nên không chia hết cho 2

=>d=1

Vậy hai số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau(đpcm)

 

nobi nobita
4 tháng 2 2016 lúc 20:11

ta lấy 1 vd đơn giản : 1 và 3 UwCLN(1;3)=1 

đó chứng minh duoc roi do

joon pham
30 tháng 7 2017 lúc 20:27

jjjijuhjkkkjij

boruto
Xem chi tiết
Lê Khang An
1 tháng 4 2015 lúc 17:53

a,2 STN lẻ là 2n+1 và 2n+3

Gọi d= ƯC (2n+1,2n+3)

suy ra2n+1và 2n+3 chia hết cho d

suy ra 2chia hết cho d,suy ra d=1,2

mà 2n+1,2n+3 là số lẻ không chia hết cho d

suy rs d=1(đ pcm)

Vu Minh Trang
1 tháng 4 2015 lúc 18:31

a.

Goi 2 so tu nhien le lien tiep la 2n+1 va2n+3

d la uoc chung  bat ki cua 2n+1va2n+3 nen ta suy ra 2n+1 va2n+3 chia het cho d

suy ra (2n+3) -(2n+1)chia het cho d

suy ra 2 chia het cho d

suy ra d\(\in\)­U(2)

suy ra d =1 hoac=2

ma 2n+1va2n+3 le

nen d\(\ne\)2 suy ra d=1

vay 2 so le bao gio cung nguyen to cung nhau

b.

\(n^2+1=3000\)

\(n^2\)=2999

ta co2916<2999<3025

nen \(54^2\)<2999<\(55^2\)

suy ra 2999 khong la so chinh phuong

  ma \(n^2\) la so chinh phuong

suy ra khong ton tai

 

 

roronoa zoro
Xem chi tiết
Nguyễn Ích Đạt
5 tháng 4 2016 lúc 19:50

a) Goi :3 số tự nhiên liên tiếp la : n, n+1, n+2 
=> tổng : n+n+1+n+2 = 3n+3 = 3(n+1) chia hết cho 3 Vậy : tổng của ba số tự nhiên liên tiếp chia hết cho 3

b) Goi 2 so le lien tiep co dang 2k+1 va 2k+3

Gọi D là ước số chung của chúng.

Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D

Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D

Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ

.Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau!

 chúc bạn học tập tốt !!!