chứng minh rằng : P=n^3+20n chia hết với mọi số nguyên n chẵn
(ai giúp tôi bài này với)
Chứng minh rằng : n^2(n+1 ) + 2n(n+1) luôn chia hết cho 6 với mọi số nguyên n. AI biết làm bài này giúp mik nha mik đang cần gấp lắm .cảm ơn trước !!!
Ai giúp mình câu này với
Chứng minh rằng với mọi số nguyên dương N thì
3^n+2 - 2^n+2 + 3^n-2^n
thì chia hết cho 10
3n+2-2n+2+3n-2n
=(3n+2+3n)-(2n+2+2n)
=3n(32+1)-2n(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10(3n-2n-1)chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\forall m,n\in Z^+\)
P/s:nguyên dương N ??
Các bạn ơi giúp mình giải bài toán này nhé !
P/s: Nhớ giải chi tiết giùm mình nhé (Thanks!!!!)
a) chứng minh rằng với mọi số nguyên n thì :(n^2-3n+1)(n+2)-n^3+2 chia hết cho 5
b) chứng minh rằng với mọi số nguyên n thì: (6n+1)(n+5)-(3n+5)(2n-10) chia hết cho 2
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
Chứng minh với mọi số nguyên dương \(n\)thì \(A=n^3+20n\)chia hết cho 48
GIÚP MIK VỚI
Chứng minh rằng với mọi số nguyên n thì:a^3+6a^2+8a chia hết cho 48(với a là số chẵn)
\(a^3+6a^2+8=a\left(a^2+6a+9-1\right)=\)
\(=a\left[\left(a+3\right)^2-1\right]=a\left(a+3-1\right)\left(a+3+1\right)=\)
\(=a\left(a+2\right)\left(a+4\right)\)
Đây là tích của 3 số chẵn liên tiếp đặt \(a=2k\)
\(\Rightarrow a\left(a+2\right)\left(a+4\right)=2k\left(2k+2\right)\left(2k+4\right)=\)
\(=8k\left(k+1\right)\left(k+2\right)=A\)
Ta thấy
\(k\left(k+1\right)\) chẵn đặt \(k\left(k+1\right)=2p\)
\(\Rightarrow A=16p\left(k+2\right)⋮16\) (1)
Ta thấy \(k\left(k+1\right)\left(k+2\right)⋮3\) (2) (Tích của 3 số TN liên tiếp)
Từ (1) và (2)
\(\Rightarrow A⋮16x3\Rightarrow A⋮48\) vì \(\left(16,3\right)=1\)
BÀI 1 :Chứng minh
a) 2009^2010 không chia hết cho 2010
b) n^2 + 7n + 22 không chia hết cho 9 ( với mọi n thuộc N )
BÀI 2 : Cho a là số nguyên tố lớn hơn 3 . Chứng minh : a^2 - 1 chia hết cho 24
Bài 3 : Chứng minh n^3 + 6n^2 + 8n chia hết cho 48 với mọi số chẵn n
2009^2010đồng dư với 1 (theo mod 2010)
Chứng minh rằng A= n^3+9n^2+20n chia hết cho 6 vói mọi n là số nguyên
cho tam giác abc vuông tại a có ab=9cm , ac=12cm.gọi M, N lần lượt là trung điểm của ab,ac
a) tính độ dài mn
b)hỏi tứ giác BMNC là hình j ?vì sao?
Chứng minh rằng với mọi số nguyên dương n thì: (n+1)(n+2)...(n+n) chia hết cho 2n.
Giúp mình giải bài này, mình đang cần gấp. Cảm ơn!
......................?
mik ko biết
mong bn thông cảm
nha ................
Chứng tỏ rằng mọi số tự nhiên n thì tích (n + 3)(n + 6) chia hết cho 2.'
Bài này giải theo 2 trường hợp là chẵn và lẻ nhé các bạn, giúp với.
Ta có n là số tự nhiên nên n có 2 dạng : 2k hoặc 2k+1 (k\(\in\)N)
+Th1: n = 2k
\(\left(n+3\right)\left(n+6\right)=\left(2k+3\right)\left(2k+6\right)=2\left(2k+3\right)\left(k+3\right)⋮2\)
+Th2: n=2k+1
\(\left(n+3\right)\left(n+6\right)=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)⋮2\)
Vậy với\(\forall n\in N\)thì tích (n+3)(n+6) chia hết cho 2