Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Đoàn
Xem chi tiết
Cô Hoàng Huyền
15 tháng 12 2017 lúc 11:02

Ta chứng minh \(t=\sqrt{m}=\sqrt{1-\frac{1}{xy}}\) là số hữu tỉ.

Ta có \(t=\sqrt{1-\frac{1}{xy}}=\frac{\sqrt{xy-1}}{\sqrt{xy}}=\frac{\sqrt{xy-1}.\sqrt{xy}.x^2y^2}{\sqrt{xy}.\sqrt{xy}.x^2y^2}\)

\(=\frac{\sqrt{x^6y^6-x^5y^5}}{x^3y^3}=\frac{\sqrt{\left(x^3y^3\right)^2-x^5y^5}}{x^3y^3}\)

Lại có: \(x^5+y^5=2x^3y^3\Rightarrow x^3y^3=\frac{x^5+y^5}{2}\)

Vậy nên \(t=\frac{\sqrt{\left(\frac{x^5+y^5}{2}\right)^2-x^5y^5}}{x^3y^3}=\frac{\sqrt{\left(\frac{x^5-y^5}{2}\right)^2}}{x^3y^3}=\frac{\left|x^5-y^5\right|}{2x^3y^3}=\frac{\left|x^5-y^5\right|}{x^5+y^5}\)

Do x, y hữu tỉ nên \(\frac{\left|x^5-y^5\right|}{x^5+y^5}\in Q\)

Vậy m là bình phương một số hữu tỉ (đpcm).

Nguyễn Mai Nhật Quang
Xem chi tiết
lan anh
24 tháng 1 2017 lúc 12:39

chiu chet da hoc lop 8 dau ma biet giang bay gio

Huỳnh Gia Phú
Xem chi tiết
minh anh
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Võ Văn
Xem chi tiết
Nguyễn Thanh Mai
26 tháng 7 2015 lúc 18:09

có khùng hk vậy hùng tự đăng tự giải ls

 

Nguyễn Võ Văn
30 tháng 6 2015 lúc 13:39

1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51 
Vậy 2 số tận cùng của 51^51 là 51 
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3 
Vậy trung bìng cộng là 2 
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6 
Do x là số nguyên tố => x=7 TM 
5)3y=2z=> 2z-3y=0 
4x-3y+2z=36=> 4x=36=> x=9 
=> y=2.9=18=> z=3.18/2=27 
=> x+y+z=9+18+27=54 
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5 
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7) 
Nhân ra kết quả cuối cùng là x=3 
8)ta có (3x-2)^5=-243=-3^5 
=> 3x-2=-3 => x=-1/3 
9)Câu này chưa rõ ý bạn muốn hỏi! 
10)2x-3=4 hoặc 2x-3=-4 
<=> x=7/2 hoặc x=-1/2 
11)x^4=0 hoặc x^2=9 
=> x=0 hoặc x=-3 hoặc x=3 

Nguyễn Hữu Thế
30 tháng 6 2015 lúc 13:43

anh đang chia sẻ kiến thức đóa à

Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Minh Quang
20 tháng 3 2021 lúc 7:18

ta có 

\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\Leftrightarrow\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-x\right)=\left(1-x\right)\left(1-y\right)\)

\(\Leftrightarrow1-2\left(x+y\right)+3xy=0\)

Vậy \(M=x^2+y^2-xy+\left(1-2\left(x+y\right)+3xy\right)=\left(x+y+1\right)^2\)

vậy ta có đpcm

Khách vãng lai đã xóa
Fresh
Xem chi tiết
Cô Hoàng Huyền
15 tháng 12 2017 lúc 11:04

Câu hỏi của Hoàng Anh Trần - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé. Chỉ cần thêm kết luận \(\sqrt{1-xy}\in Q\) nên 1 - xy là bình phương của số hữu tỉ.

Kiệt Nguyễn
4 tháng 10 2020 lúc 8:48

* Xét y = 0 thì x = 0 => 1 - xy = 1 (là bình phương của một số hữu tỉ)

* Xét y \(\ne\)0 thì chia hai vế của giả thiết cho y4, ta được: \(\frac{x^5}{y^4}+y=\frac{2x^2}{y^2}\Rightarrow\frac{x^6}{y^4}+xy=\frac{2x^3}{y^2}\Rightarrow1-xy=\frac{x^6}{y^4}-\frac{2x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)(là bình phương của một số hữu tỉ)

Vậy 1 - xy là bình phương của một số hữu tỉ (đpcm)

Khách vãng lai đã xóa
Nguyễn Trà My
Xem chi tiết