tìm số nguyên x và y biết
\(\frac{x}{8}\)=\(\frac{y}{12}\)
và 2x+3y=13
Tìm số tự nhiên x và y biết \(\frac{x}{8}\)=\(\frac{y}{12}\) và 2x +3y=13
Ta có : \(\frac{x}{8}=\frac{y}{12}=\frac{2x}{16}=\frac{3y}{36}=\frac{2x+3y}{16+36}=\frac{13}{52}\)
\(\Rightarrow\frac{13}{52}=\frac{x}{8}\Rightarrow x=\frac{13.8}{52}=\frac{104}{52}=2\)
\(\Rightarrow\frac{13}{52}=\frac{y}{12}\Rightarrow y=\frac{13.12}{52}=\frac{156}{52}=3\)
Vậy x = 2 , y = 3
Đầu tiên bạn tách 13 ra tổng của 2 số:
13 = 13 + 0
12 + 1
11 + 2
10 + 3
9 + 4
8 + 5
7 + 6
6 + 7
5 + 8
4 + 9
3 + 10
2 + 11
1 + 12
0 + 13
Mà 2x + 3y = 13 => 2 số hạng của tổng phải có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> 2x = 4 ; 3y = 9
=> x = 2 ; y = 3
Tìm hai số x,y biết :
\(\frac{x}{2}=\frac{y}{5}\)biết 2x+y=-18
\(\frac{x}{17}=\frac{y}{12}\)và 2x-y=64
7x=3y và x+7=29
x:y=5:6 và 2x-3y=1
-2-x=3y và xy=-54
Tìm các số nguyên x;y thỏa mãn: \(\frac{x}{8}\)=\(\frac{y}{12}\)và 2x+3y=-156
\(\frac{x}{8}=\frac{y}{12}=\frac{2x+3y}{16+36}=\frac{-156}{52}=-3\)
x=-3.8=-24
y=-3.12=-36
Ta có : \(\frac{x}{8}=\frac{y}{12}=\frac{2x}{16}=\frac{3y}{36}=\frac{2x+3y}{16+36}=\frac{-156}{52}=-3\)
=> x = -3.8 = -24 ; y = -3.12 = -36
Tìm x , y , z biết :
a ) \(\frac{x}{y}=-2\) và x + y = 12
b ) \(\frac{x}{y}=\frac{7}{10}\) và x y = 36
c ) \(\frac{2x}{3y}=\frac{-1}{3}\) và - 2x + 3y = 7
a) Giải:
Ta có: \(\frac{x}{y}=-2\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-2}=\frac{y}{1}=\frac{x+y}{-2+1}=\frac{12}{-1}=-12\)
+) \(\frac{x}{-2}=-12\Rightarrow x=24\)
+) \(\frac{y}{1}=-12\Rightarrow y=-12\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(24;-12\right)\)
b) Giải:
Ta có: \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\)
Đặt \(\frac{x}{7}=\frac{y}{10}=k\)
\(\Rightarrow x=7k;y=10k\)
Mà \(xy=36\)
\(7k10k=36\)
\(\Rightarrow70k^2=36\)
\(\Rightarrow k^2=\frac{18}{35}\) ( sai đề )
c) Giải:
Ta có: \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\Rightarrow\frac{-2x}{1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-2x}{1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)
+) \(\frac{-2x}{1}=\frac{7}{4}\Rightarrow x=\frac{-7}{8}\)
+) \(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(\frac{-7}{8};\frac{7}{4}\right)\)
Bài 1: Tìm các số x; y; z biết rằng \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 124.
Bài 2: Tìm các số x; y; z biết rằng \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Tìm các số nguyên x, y, biết:
a) x 4 = y 3 và x + y = 14
b) x − 3 y − 2 = 3 2 và x - y = 4
c) x 8 = y 12 và 2x + 3y = 13
a, Tìm x biết
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\)
b, Tìm các số x,y,z
\(\frac{x}{10}=\frac{y}{5}:\frac{y}{2}=\frac{z}{3}\)và 2x-3y+4z=330
Tìm x y (z) biết:
a)\(\frac{x}{5}=\frac{y}{9}\)và x+y=28
b)\(\frac{x}{y}=\frac{8}{7}\)và y-x=5
c)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{7}\)và y+z=12
d)\(\frac{2x}{5}=\frac{3y}{7}\)và x+y=29
Thank you!!!
tìm x, y, z biết \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\) và x+y+z=109
\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)
\(\Rightarrow\frac{1}{6}.\frac{2x}{5}=\frac{1}{6}.\frac{3y}{10}=\frac{1}{6}.\frac{z}{12}\)
\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{72}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{72}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}=\frac{x+y+z}{15+20+72}=\frac{109}{107}\)
Bạn xem lại đề bài nhé !!!
Ta có :
\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)
\(\Leftrightarrow\)\(\frac{2x}{5}.\frac{1}{6}=\frac{3y}{10}.\frac{1}{6}=\frac{z}{12}.\frac{1}{6}\)
\(\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}\)
Và \(x+y+z=109\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}=\frac{x+y+z}{15+20+72}=\frac{109}{107}\)
Do đó :
\(\frac{x}{15}=\frac{109}{107}\)\(\Rightarrow\)\(x=\frac{109}{107}.15=\frac{1635}{107}\)
\(\frac{y}{20}=\frac{109}{107}\)\(\Rightarrow\)\(y=\frac{109}{107}.20=\frac{2180}{107}\)
\(\frac{z}{72}=\frac{109}{107}\)\(\Rightarrow\)\(z=\frac{109}{107}.72=\frac{7848}{107}\)
Vậy \(x=\frac{1635}{107}\)\(;\)\(y=\frac{2180}{107}\) và \(z=\frac{7848}{107}\)
Chúc bạn học tốt ~