CMR 122006+62007 chia hết cho 2 và 5
CMR: 1+3+3^2+3^3+...+3^44 chia hết cho 4 và 40
CMR: 2+2^2+2^3+...+2^100 chia hết cho 3 và 5
CMR a - 1050 + 5 chia hết cho 3 và 5;b- 1025 +26 chia hết cho 9 và 2.
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)
a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)
vì n chẵn nên đặt n=2k
\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)
vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2
=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16
\(n^3+4n=n^3-4n+8n\)
đặt n=2k
=>\(8\left(k-1\right)k\left(k+1\right)+16k\)
mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)
1)2/5+x:5/7=1/3
CMR: 2)B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
3)CMR: S=3^2+3^3+...+3^101 chia hết cho 120
4)Cho S=5+5^2+5^3+...+5^2006
a) tính S
b)CMR S chia hết cho 6, và S chia hết cho 30
5) tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
bài 1: cho A=3 + 3^2 + 3^3 +......+3^60. Chứng minh rằng
a)A chia hết 4 b)A chia hết 13
bài 2: CMR: (12a + 36b) chia hết 12 với a,b thuộcN
bài 3:cho a,b,c thuộc N và (111a + 23b) chia hết 12
CMR: (9a + 13b) chia hết cho 12
bài 4: CMR
a) 5 + 5^2 + 5^3 chia hết cho 5
b) 2^9 + 2^10 + 2^11 + 2^12 chia hết cho 15
c) 10^11 + 8 chia hét cho 3
d) 3^20 + 3^19 - 3^18 chia hết 11
bài 5: cho A = 8n + 111....1( n chữ số 1)
CMR: A chia hết 9
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
Bài 2:(12a + 36b) = (12a + 12 x 3 x b) = 12( a + 3b)chia hết cho 12
Chứng minh rằng
a) với x;y thuộc N,CMR: 5*x+47*y chia hết cho 17 khi và chỉ khi x+6*y chia hết cho 17
b) với x;y thuộc N,CMR: x+2*y chia hết cho 5 khi và chỉ khi 3*x+16*y chia hết cho 5
a/
\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)
\(5x+47y=\left(5x+30y\right)+17y\)
\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)
b/
\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)
Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)
CMR :
a ) 5 ^ 2016 chia hết cho 5
b) 5 ^ 2016 - 1 chia hết cho 2
c ) 3 ^ 16 - 1 chia hết cho 2 và 5
ai làm sớm mình tick cho
a) vì 5 chia hết cho 5 nên 52016 chia hết cho 5.
b) ta có:
51 = 5 (lẻ)
52 = 25 (lẻ)
53 = 125 (lẻ)
-----------------
=> 5 mũ bao nhiêu cũng có kq là 5 (lẻ)
mà lẻ - 1 = chẵn
=> 52016 - 1 chia hết cho 2
c) ta có:
31 = 3
32 = 9
33 = 27
34 = 81
35 = ...3
-------------
nếu tính tiếp thì chữ số tận cùng sẽ lặp lại theo chu kì 3 - 9 - 7 - 1
316 = ...........1 vì số mũ là 4k
=> 316 - 1 = ............1 - 1 = .........0
mà số có chữ số tận cùng là 0 thì chia hết cho 2 và 5.
=> 316 - 1 chia hết cho 2 và 5
a/ Vì 5 có chữ số tận cùng bằng 5 nên 52016 có tận cùng bằng 5. Vậy 52016 chia hết cho 5.
b/ Vì 52016 có chữ số tận cùng bằng 5, nên 52016 - 1 có tận cùng bằng 4. Vậy 52016 - 1 chia hết cho 2.
Bài 1) Cmr nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11
Bài 2)Tìm a biết 20a20a20a chia hết cho 7
Bài 3) Cho abc + deg chia hết cho 37 . cmr abcdeg chia hết cho 37
Bài 4) Cho abc -deg chia hết cho 7 .cmr abcdeg chia hết cho 7
Bài 5) Tím STN a và b ,sao cho a chia hết cho b và b chia hết cho a
Làm đúng 3 bài mình cho 3 like
1, CMR : 23^401 + 38^202 - 2^433 chia hết cho 5
2, CMR: 9^2014 +3^2013 +2^2012 chia hết cho 10
3, CMR : 3^2013 + 2^2013 chia hết cho 5
lớp 6 cứt; lớp 7,8 rồi; tao học lớp 6 mà đã biết đâu
Cậu bùi danh nghệ gì đó ơi đây là toán nâng cao chứ ko phải toán lớp 7,8 như cậu nói đâu