Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mạnh Trung
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Nguyễn Thị Thúy Hường
Xem chi tiết
bảo khánh
Xem chi tiết
Nguyễn Thị Thúy Hường
Xem chi tiết
Nguyễn Thị Thúy Hường
Xem chi tiết
Nguyễn Thị Thúy Hường
Xem chi tiết
Nobita Kun
11 tháng 1 2016 lúc 18:49

Ta có:

Vì n là tổng của 2 số chính phương

=> đặt n = a2 + b2

=> 2n = (a2 + b2) + (a2 + b2)

=> 2n = (a2 + a2) + (b2 + b2)

=> 2n = 2a2 + 2b2 là tổng của 2 số chính phương (ĐPCM)
Vậy...

Trần Anh Tuấn
19 tháng 1 2016 lúc 21:37

đặt n=a2+b2=> 2n= a2+2ab+b2+a2-2ab+b2=(a+b)2+(a-b)2=> đfcm

Phương Anh
Xem chi tiết
Minh Hiếu
13 tháng 10 2021 lúc 15:33

Giả sử \(2n=a^2+b^2\)(a,b∈N).

⇒ \(n=\dfrac{a^2+b^2}{2}=\left(\dfrac{a+b}{2}\right)^2+\left(\dfrac{a-b}{2}\right)^2\)

Vì \(a^2+b^2\) là số chẵn nên a và b cùng tính chẵn, lẻ.

⇒ \(\dfrac{a+b}{2}\)  và \(\dfrac{a-b}{2}\) đều là số nguyên

Phạm Hữu Nam chuyên Đại...
Xem chi tiết
T.Ps
13 tháng 7 2019 lúc 10:09

#)Giải :

a)Theo đầu bài, ta có : \(n=a^2+b^2\)

\(\Rightarrow2n=2a^2+2b^2\Rightarrow2n=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\)

\(\Rightarrowđpcm\)

b)Theo đầu bài, ta có : \(2n=a^2+b^2\)

\(\Rightarrow n=\frac{a^2}{2}+\frac{b^2}{2}\Rightarrow\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)+\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}\)

\(\Rightarrowđpcm\)