Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Anh Phan Nguyễn
Xem chi tiết
nguyen thi huong giang
Xem chi tiết
Nguyễn Thanh Bình
9 tháng 4 2017 lúc 21:32

\(=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{n.\left(n+1\right)}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{n.\left(n+1\right)}\)

Nguyễn Thanh Bình
9 tháng 4 2017 lúc 21:33

còn lại tự làm

Tiến Dũng Đinh
9 tháng 4 2017 lúc 21:42

mình giải nhé:

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{n\left(n+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2015}{2016}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{n}-\frac{1}{n+1}\right)=\frac{2015}{2016}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2015}{2016}\)

\(\Leftrightarrow1-\frac{2}{n+1}=\frac{2015}{2016}\Leftrightarrow\frac{2}{n+1}=\frac{1}{2016}\)

\(\Leftrightarrow n+1=4032\Leftrightarrow n=4031\)

Xong rồi nhé ^ ^ chúc bạn học tốt!

Phạm Trần Khánh Linh
Xem chi tiết
Saku Anh Đào
6 tháng 4 2018 lúc 20:48

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}...+\frac{1}{n.\left(n+1\right)}=\frac{2015}{2016}\)

\(\frac{1.2}{3.2}+\frac{1.2}{6.2}+\frac{1.2}{10.2}+...+\frac{1}{n\left(n+1\right)}=\frac{2015}{2016}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{1}{n.\left(n+1\right)}=\frac{2015}{2016}\)

\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{1}{n\left(n+1\right)}=\frac{2015}{2016}\)

\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2015}{2016}\)

\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=\frac{2015}{2016}\)

\(2.\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2015}{2016}\)

\(\frac{1}{2}-\frac{1}{n+1}=\frac{2015}{2016}:2\)

\(\frac{1}{2}-\frac{1}{n+1}=\frac{2015}{4032}\)

\(\frac{1}{n+1}=\frac{1}{2}-\frac{2015}{4032}\)

\(\frac{1}{n+1}=\frac{1}{4032}\)

\(\Rightarrow n+1=4032\)

\(\Rightarrow n=4031\)

Nguyễn Hải
Xem chi tiết
Thanh Tùng DZ
15 tháng 12 2017 lúc 18:50

1/3 + 1/6 + 1/10 + ... + 2/n(n+1) = 2003/2004

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}=\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{2}-\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{4008}\)

\(\Rightarrow n+1=4008\)

\(\Rightarrow n=4008-1=4007\)

Hatsune miku
Xem chi tiết
Đinh Đức Hùng
27 tháng 1 2017 lúc 14:58

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{n\left(n+1\right)}\right)=\frac{1}{2}.\frac{2003}{2004}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Leftrightarrow\frac{1}{n+1}=\frac{1}{2}-\frac{2003}{4008}=\frac{1}{4008}\)

\(\Rightarrow n+1=4008\Rightarrow n=4007\)

Vậy \(n=4007\)

Mai Linh
Xem chi tiết
Cô Hoàng Huyền
15 tháng 1 2018 lúc 9:37

Câu hỏi của trần như - Toán lớp 7 - Học toán với OnlineMath

Bài 1 em tham khảo tại link trên nhé.

Trần Thị Sương
Xem chi tiết
Hoang Bao
Xem chi tiết
Anh Cao Ngọc
Xem chi tiết