\(x_1>x_2\ge1\)
CM \(\left(1+x_1\right)\left(1+x_2\right)......\left(1+x_n\right)\ge1+x_1+x_2+...+x_n\) ,với \(x_i>-1\),i=1,n và các xi cùng dấu
Với i = 1 thì
\(1+x_1\ge1+x_1\) (đúng)
Giả sử bất đẳng thức đúng đến i = k thì ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\ge1+x_1+x_2+...+x_k\)
Đặt \(1+x_1+x_2+...+x_k=y\)
\(\Rightarrow x_1+x_2+...+x_k=y-1\)
\(\Rightarrow y-1\)cùng dấu với xn
Ta chứng minh bất đẳng thức đúng với \(i=k+1\)
Ta có
\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\left(1+x_{k+1}\right)\ge\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\)
Ta chứng minh
\(\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\ge1+x_1+x_2+...+x_k+x_{k+1}\)
\(\Leftrightarrow y\left(1+x_{k+1}\right)\ge y+x_{k+1}\)
\(\Leftrightarrow x_{k+1}\left(y-1\right)\ge0\)
Bất đẳng thức này đúng vì \(x_{k+1};\left(y-1\right)\)là hai số cùng dấu
\(\Rightarrow\)Bất đẳng thức đúng với i = k + 1
Vậy bất đẳng thức ban đầu là đúng (phương pháp quy nạp nhé bạn)
cho pt bậc 2: \(x^2+mx+n=0\) có hai nghiệm \(x_1;x_2\) và \(n\le m-1\)
CMR: \(x_1^2+x_2^2\ge1\)
khôi nguyễn đăng làm chi tiết giúp mk đi mk ko hiểu
Cho phương trình \(x^2-bx+c=0\) có hai nghiệm thực\(x_1\),\(x_2\) thỏa mãn \(x_1+x_2\ge1\) tìm giá trị lớn nhất của biểu thức \(P=2bc-b^3-3b+2\)
Cho dãy số ( xn) xác định bởi \(x_1=\frac{1}{2},x_{n+1}=x_n^2+x_n,\forall n\ge1.\)Đặt \(S_n=\frac{1}{x_1+1}+\frac{1}{x_2+1}+...+\frac{1}{x_n+1}.\)Tìm lim Sn
Từ công thức truy hồi ta có:
\(x_{n+1}>x_n,\forall n=1,2...\)
\(\Rightarrow\)dãy số \(\left(x_n\right)\) là dãy số tăng
giả sử dãy số \(\left(x_n\right)\) là dãy bị chặn trên \(\Rightarrow limx_n=x\)
Với x là nghiệm của pt ta có: \(x=x^2+x\Leftrightarrow x=0< x_1\) (vô lý)
=> dãy số \(\left(x_n\right)\) không bị chặn hay \(limx_n=+\infty\)
Mặt khác: \(\frac{1}{x_{n+1}}=\frac{1}{x_n\left(x_n+1\right)}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow\frac{1}{x_n+1}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow S_n=\frac{1}{x_1}-\frac{1}{x_{n+1}}=2-\frac{1}{x_{n+1}}\)
\(\Rightarrow limS_n=2-lim\frac{1}{x_{n+1}}=2\)
Gọi
x1,x2 là hai nghiệm của pt \(x^2-2x-1=0\) tính giá trị của các biểu thức:
A=\(x_1^2+x_2^2\)
B=\(x_1^3+x_2^3\)
C=\(x_1^4+x_2^4\)
D=\(x_1^2.x_2+x_2^2.x_1\)
E=\(\dfrac{x_1^2}{x_2}+\dfrac{x_2^2}{x_1}\)
F=\(\left|x_1-x_2\right|\)
G=\(\dfrac{x_1}{x_2+1}+\dfrac{x_2}{x_1+1}\)
H=\(\left(x_1+\dfrac{2}{x_2}\right)\left(x_2+\dfrac{2}{x_1}\right)\)
,có \(ac< 0\)=>pt đã cho luôn có 2 nghiệm phân biệt
vi ét \(=>\left\{{}\begin{matrix}x1+x2=2\\x1x2=-1\end{matrix}\right.\)
a,\(A=\left(x1+x2\right)^2-2x1x2=.....\) thay số tính
b,\(B=\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)=.......\)
c,\(C=x1^{2^2}+x2^{2^2}=\left(x1^2+x2^2\right)^2-2\left(x1x2\right)^2=\left[\left(x1+x2\right)^2-2x1x2\right]^2-2\left(x1x2\right)^2=....\)
\(D=x1x2\left(x1+x2\right)=.....\)
\(x1,x2\ne0=>E=\dfrac{\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)}{x1x2}=...\)
\(F=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}=....\)
\(x1,x2\ne-1=>G=\dfrac{\left(x1+x2\right)^2-2x1x2+x1x2}{x1x2+x1+X2+1}=...\)
\(x1,x2\ne0=>H=\left(\dfrac{x1x2+2}{x2}\right)\left(\dfrac{x1x2+2}{x1}\right)=\dfrac{\left(x1x2+2\right)^2}{x1x2}\)
\(=\dfrac{\left(x1x2\right)^2+4x1x2+4}{x1x2}=..\)
1. Cho phương trình \(mx^2+m^2x+1=0\) có hai nghiệm \(x_1\)và \(x_2\). Gọi k là số các giá trị của m thõa mãn \(x_1^3+x_2^3=0\)TÌm k?
2. Cho \(x+3y\ge1\). TÌm MinA= \(x^2+y^2\)
Cauchy-Schwarz ta có:
\(\left(1+9\right)\left(x^2+y^2\right)\ge\left(x+3y\right)^2\ge1\)
\(10\left(x^2+y^2\right)\ge1\Leftrightarrow A\ge\frac{1}{10}\)
Tự tìm dấu "="
A=\(\dfrac{x_2\sqrt{x_1}+x_1\sqrt{x_2}}{x_1-x_2}\)
Cho phương trình \(x^2-7x+10=0\) ,không giải phương trình hãy tính:
A = \(x_1^2+x_2^2+3x_1x_2\)
B = \(\dfrac{1}{x_1}=\dfrac{1}{x_2}\)
C = \(\sqrt{x_1}=\sqrt{x_2}\)
D = \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\)
Ptrình : \(x^2-7x+10=0\)
Ta có : \(\Delta=\left(-7\right)^2-4.1.10=9>0\)
=> Phương trình có 2 nghiệm phân biệt \(x1\) và \(x2\)
\(x1=\dfrac{-\left(-7\right)+\sqrt{\Delta}}{2.1}=\dfrac{7+\sqrt{9}}{2}=5\)
\(x2=\dfrac{-\left(-7\right)-\sqrt{\Delta}}{2.1}=\dfrac{7-\sqrt{9}}{2}=2\)
Vậy :
A = \(x_1^2+x_2^2+3x_1x_2=5^2+2^2+3.5.2=59\)
B = .................
.... (có x1 và x2 rồi thik thay vào lak tính đc, cái này bn tự tính nha)
6 Gọi \(x_1,x_2\) là 2 nghiệm của pt \(x^2-x-3=0\) .Không giải pt hãy tính giá trị của các biểu thức sau:
a. A=\(x_1^2+x_2^2\)
b. B=\(x_1^2x_2+x_1x_2^2\)
c. C=\(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
d. D=\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{1}{1}=1\\x_1x_2=\dfrac{c}{a}=-\dfrac{3}{1}=-3\end{matrix}\right.\)
a
\(A=x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2=1^2-2.\left(-3\right)=1+6=7\)
b
\(B=x_1^2x_2+x_1x_2^2=x_1x_2\left(x_1+x_2\right)=\left(-3\right).1=-3\)
c
\(C=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2}{x_1x_2}+\dfrac{x_1}{x_1x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{-3}=-\dfrac{1}{3}\)
d
\(D=\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=\dfrac{x_2^2}{x_1x_2}+\dfrac{x_1^2}{x_1x_2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\dfrac{1^2-2.\left(-3\right)}{-3}=\dfrac{1+6}{-3}=\dfrac{7}{-3}=-\dfrac{3}{7}\)