tìm một phân số biết tổng của phân số đó và phân số nghịch đảo của nó là 25/12
tìm một phân số biết tổng của phân số đó và phân số nghịch đảo của nó là 25/12
câu 1: tìm phân số bằng phân số 121/143 biết rằng hiệu của mẫu và tử của nó bằng 6
câu 2 tìm phân số bằng phân số 25/35 biết rằng tổng của tử và mẫu của nó bằng 4812
câu 3: tìm phân số bằng phân số 993/1000 biết rằng mẫu của phân số đó lớn hơn tử của nó 14 đơn vị
câu 4; Viết số nghịch đảo của -5 dưới dạng tổng các nghịch đảo của 3 số nguyên khác nhau
Câu 1 : phân số 33/39
Câu 2: phân số 2005/2807
Câu 3: phân số 1986/2000
Câu 4: các số nguyên là -1;1;-5. Tổng nghịch đảo là: -1+1-1/5=-1/5
a)Chứng minh rằng tổng của một phân số dương với nghịch đảo của nó không nhỏ hơn 2.
b) Tìm các phân số có tử và mẫu đều dương sao cho tổng của phân số đó với nghịch đảo của nó có giá trị nhỏ nhất.
a. Gọi phân số cần tìm là \(\frac{a}{b}\)
\(\Rightarrow\) Phân số nghịch đảo là \(\frac{b}{a}\)
Theo bài ra, ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)
\(\Leftrightarrow a\left(a-b\right)+b\left(b-a\right)\ge0\)
\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì (a-b)2 chắc chắn lớn hơn hoặc bằng 0
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Vậy tổng của một phân số dương với ghịch đảo của nó luôn lớn hơn hoặc bằng 2.
tìm phân số tối giản khác 0 biết tổng của nó và phân số nghịch đảo của nó bằng 41/20
Tìm các phân số có tử và mẫu đều là dương sao cho tổng của phân số đó với số nghịch đảo của nó có giá trị nhỏ nhất
1)chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2
2)viết số nghịch đảo của -2 dưới dạng tổng các nghịch đảo của ba số nguyên khác nhau
3)cho hai phân số 8/15 và 18/35.Tìm số lớn nhất sao cho khi chia mỗi phân số này cho số đó ta được kết quả là số nguyên
4)tìm hai số biết rằng 9/11 của số này bằng 6/7 của số kia và tổng của hai số đó bằng 258
5)tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 6/7 và chia a cho 10/11 ta đều được kết quả là số tự nhiên
6)tìm hai số biết rằng 7/9 của số này bằng 28/33 của số kia và hiệu của hai số đó bằng 9
Tìm một phân số tối giản khác 0 biết rằng tổng của nó và nghịch đảo của nó bằng 41/20
Gọi phân số cần tìm là a/b. Theo đầu bài ta có:
\(\frac{a}{b}+\frac{b}{a}=\frac{41}{20}\)
Ta thấy \(\frac{a}{b}\cdot\frac{b}{a}=1\)
Đặt \(\frac{a}{b}-\frac{b}{a}=k\)
\(\Rightarrow\frac{a}{b}=\frac{\frac{41}{20}+k}{2};\Rightarrow\frac{b}{a}=\frac{\frac{41}{20}-k}{2}\)
\(\Rightarrow\frac{a}{b}\cdot\frac{b}{a}=\frac{\frac{41}{20}+k}{2}\cdot\frac{\frac{41}{20}-k}{2}=1\)
\(\Rightarrow\frac{\left(\frac{41}{20}+k\right)\cdot\left(\frac{41}{20}-k\right)}{4}=1\)
\(\Rightarrow\left(\frac{41}{20}\right)^2-k^2=4\)
\(\Rightarrow\frac{1681}{400}-k^2=\frac{1600}{400}\)
\(\Rightarrow k^2=\frac{81}{400}\)
\(\Rightarrow k=\frac{9}{20}\)
Vậy phân số cần tìm là: \(\left(\frac{41}{20}+\frac{9}{20}\right):2=\frac{5}{4}\)
Đáp số: 5/4
Vì nghịch đảo của nó bằng 41/20 nên phân số đó là: 20/41
Tìm các phân số có tử và mẫu đều dương sao cho tổng của phân số đó với phân số nghịch đảo của nó có giá trị nhỏ nhất.
Trả lời:
gọi phân số cần tìm là a/b (a,b khác 0)
=> số nghịch đão của phân số này là b/a
Giả sử a>=b, đặt a=b+k (k>=0)
Ta có: \(\frac{a}{b}\)+ \(\frac{b}{a}\)= \(\frac{b+k}{b}\)+\(\frac{b}{b+k}\)= 1+ \(\frac{k}{b}\)+\(\frac{b}{b+k}\)\(\ge\)1+ \(\frac{k}{b+k}\)+\(\frac{b}{b+k}\)=1+ \(\frac{b+k}{b+k}\)=2
Ta thấy dấu bằng xảy ra khi k=0 => a=b => phân số cần tìm là a/b=1
Đáp số: phân số cần tìm là có tử số =mẫu số (a=b>0)
và Giá trị nhỏ nhất của phân số này với phân số nghịch đảo của nó=2
Cho hai phân số có tổng bằng 3 và tích của chúng là 12/5. Tính tổng của các phân số nghịch đảo của hai phân số đó