Chứng minh rằng:
(n+1) (n+12) luôn là số chẵn
chứng minh rằng: A(n) bằng n2+ 3n luôn luôn là số chẵn
Hãy chứng minh rằng (n+1)x(n+6) thì kết quả luôn luôn là một số chẵn với mỗi số tự nhiên n
Giải từng bước nhé :)
Chứng minh rằng với mọi n :
a, A = ( n + 9 ).( n + 12 ) luôn là số chẵn
b, B = n2 + n + 3 luôn là số lẻ
a. Với mọi n thì n có dạng 2k hoặc 2k + 1
* Với n = 2k
Ta có : (n + 9 ) ( n + 12 ) = ( 2k + 9 ) ( 2k + 12 )
<=> (n + 9 ) ( n + 12 ) = 2(k + 6)( 2k + 9 ) ( 2k + 12 ) \(⋮\)2 ( 1 )
* Với n = 2k + 1
Ta có : (n + 9 ) ( n + 12 ) = ( 2k + 1 + 9 ) ( 2k + 1 + 12 )
<=> (n + 9 ) ( n + 12 ) = ( 2k + 10 ) ( 2k + 13 )
<=> (n + 9 ) ( n + 12 ) = 2( k + 5 ) ( 2k + 13 ) \(⋮\)2 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra A = ( n + 9 ).( n + 12 ) luôn là số chẵn
b. B = n2 + n + 3
<=> B = n( n + 1 ) + 3
Mà n( n + 1 ) luôn chẵn nên n( n + 1 ) + 3 lẻ
Suy ra B = n2 + n + 3 luôn là số lẻ
Chứng minh rằng :
a/ Nếu số A = (n+8).(n+13) thì A luôn là số chẵn
b/ Nếu số B = n2 + n +1 thì B luôn là số lẻ
a. Trong A, luôn có 1 số chẵn ( n có dạng 2k hoặc 2k + 1) đều thỏa mãn
=> Tích luôn bằng a
b. Nếu n = 2k
thì B = (2k)mũ 2 + 2k + 1
= 4k2 + 2k + 1 ( là số lẻ )
Nếu n = 2k+1
thì B = ( 2k + 1 )2 + 2k+ 1 + 1
= 4k2 + 1 + 2k + 2 ( là số lẻ )
=> đpcm
chứng minh rằng (n+4)(n+9)luôn là một số chẵn
Đề bai ban thieu dieu kien cua n nhe. O day mh lam theo n la so nguyen ( Truong hop n la STN lam tuong tu)
Nếu n=2k(k \(\in\)Z) => n+4=2k+4\(⋮\)2
=> (n+4)(n+9)\(⋮\)2
Nếu n=2k+1(k\(\in\)Z)=>n+9=2k+10\(⋮\)2
=>(n+4)(n+9)\(⋮\)2
Vay voi moi so nguyen n thi (n+4)(n+9) la so chan
bạn
Phúc L
Làm đúng rồi . Các bạn tham khảo nha
chứng minh rằng với số tự nhiên n ta luôn có
a) 714n-1 chia hết cho 5 với n chẵn
b) 124n+1 +34n+1 chia hết cho 5
Xét chữ số tận cùng.Ngại làm mấy bài kiểu này lắm
chứng minh: (N + 2014) x (N + 2015) luôn luôn là số chẵn với số tự nhiên N?
Nếu N là số lẻ thì N + 2015 chia hết cho 2 => tích đó là số chẵn
Nếu N là số chẵn thì N + 2014 chia hết cho 2 => tích đó là số chẵn
chứng minh rằng với n chẵn thì A= n/12 +n2/8 + n3/24 là số nguyên
A=a^3/24+a^2/8+a/12
= (a^3+ 3 a^2+ 2) /24 = a(a+1)(a+2)/24
ta cần CM a(a+1)(a+2) chia hết cho 24
để dễ hiểu mình sẽ trình bày cụ thể, còn nếu muốn rút gọn thì b có thể tự trình bày lại nhá :D
do a chắn => a=4k hoặc a=4k+2 (k thuộc Z)
TH1: a=4k; a+2=4k+2
=> a(a+1)(a+2) chia hết cho 4*2=8
và trong 3 số a, a+1, a+2 có 1 số chia hết cho 3 mà (3;8)=1
=> a(a+1)(a+2) chia hết cho 24
TH2: a=4k+2, a+2= 4k+4 (k thuộc Z)
=> a(a+1)(a+2) chia hết cho 4*2=8
và trong 3 số a, a+1, a+2 có 1 số chia hết cho 3 mà (3;8)=1
=> a(a+1)(a+2) chia hết cho 24
vậy A=a^3/24+a^2/8+a/12 luôn có giá trị nguyên
1) Đặt a=2k vì a chẵn
=>A = k^3/3+k^2/2+k/6 = (2k^3+3k^2+k)/6
= (2(k-1)k(k+1) + 3k(k+1))/6
=(k-1)k(k+1)/3 + k(k+1)/2
(k-1)k(k+1) là tích của ba số nguyên liên tiếp nên chia hết cho 3 =>(k-1)k(k+1)/3 nguyên
k(k+1) là tích của hai số nguyên liên tiếp nên chia hết cho 2 =>k(k+1)/2 nguyên
=>A nguyên
chứng tỏ rằng :với mọi số nguyên n thì (n+4).(n+7) luôn là một số chẵn
*Với n là số lẻ
=>n+4 là số lẽ;n+7 là số chẳn
=>(n+4)(n+7) là số chẳn
*Với n là số chẳn
=>n+4 là số chẳn;n+7 là số lẽ
=>(n+4)(n+7) là số chẳn
=>(n+4)(n+7) là số chẳn với mọi số nguyên n