Cho tam giác abc trên hai cạnh AB và BC lần lượt lấy điểm M và N sao cho MA=2/3AB BN=3/4BC MN cắt AC kéo dài tại P tìm tỉ số PC/PA
cho tam giác ABC trên 2 cạnh AB và BC lần lượt lấy điểm M và N sao cho MA=2/3AB BN =3/4BC MN cắt AC kéo dài tại P tính tỉ số PC/PA
e có chắc đây là bài lớp 5 không nhỉ, nếu không thì hãy chỉnh lại lớp để mọi người đưa ra lời giải phù hợp nhất nhé
cho tam giác ABC trên 2 canh AB và BC lần lượt lấy điểm m và n sao hco ma = 2/3 ab, soa cho bn = 3/4 bc. MN cắt AC kéo dài tại p . Tìm tỉ số PC và PA
Trên các cạnh AB, BC, AC của tam giác ABC lần lượt lấy các điểm M, N, P sao cho AM : MB = BN : NC = PC : PA.
a)Tính tỉ số Smnp/Sabc
b)Tìm tỉ số sao cho S tam giác MNP = 28% S tam giác ABC
Cho tam giác ABC, trên AB và AC lấy điểm M và N sao cho M là trung điểm của AB và NA = 1/2 NC (xem hình vẽ). Nối BN và CM cắt nhau tại O. Nối AO kéo dài cắt BC tại P. Tính tỉ số PB/PC ?
Bài 1: tam giác ABC, BM = 1/4BC, CB = 1/3AC. Nối MN, AM. Tìm tỉ số diện tích 2 tam giác ABM và MNC
Bài 2: cho tam giác ABC có DT là 100 xăng ti mét vuông. trên AB lấy điểm M sao cho AM = MB, trên BC lấy điểm N sao cho BN = NC và trên AC lấy điểm P sao cho AP = PC. nối M với N, N với P và P với M. tính DT tam giác MNP
bài 3: cho tam giác ABC, biết độ dày đáy BC là 27m, chiều cao AH là 20cm. trên AB lấy điểm M sao cho MA = MB. trên AC lấy điểm N sao cho NC = (1/3) AC. trên BC lấy điểm P sao cho BP = PC. Tính DT tam giác MNP
bài 4: cho tam giác ABC, M là điểm chính giữa BC, nối AM, trên AM lấy điểm N sao cho AN = 2 NM. DT tam giác ABN = 25 xăng ti mét vuông. Tính DT tam giác ABC
bạn nào có thể viết cách giải cho mình thì giúp mình nhé :)
bạn có chơi bang bang sever hư cấu ko vậy
Bài 1: tam giác ABC, BM = 1/4BC, CB = 1/3AC. Nối MN, AM. Tìm tỉ số diện tích 2 tam giác ABM và MNC
Bài 2: cho tam giác ABC có DT là 100 xăng ti mét vuông. trên AB lấy điểm M sao cho AM = MB, trên BC lấy điểm N sao cho BN = NC và trên AC lấy điểm P sao cho AP = PC. nối M với N, N với P và P với M. tính DT tam giác MNP
bài 3: cho tam giác ABC, biết độ dày đáy BC là 27m, chiều cao AH là 20cm. trên AB lấy điểm M sao cho MA = MB. trên AC lấy điểm N sao cho NC = (1/3) AC. trên BC lấy điểm P sao cho BP = PC. Tính DT tam giác MNP
bài 4: cho tam giác ABC, M là điểm chính giữa BC, nối AM, trên AM lấy điểm N sao cho AN = 2 NM. DT tam giác ABN = 25 xăng ti mét vuông. Tính DT tam giác ABC
Thế này là quá nhiều bạn ạ
Cho tam giác ABC. Trên các cạnh AB lấy điểm M sao cho AM = MB. Trên AC lấy điểm N sao cho AN = NC. BN và CM cắt nhau tại O. Nối A và O kéo dài cắt BC tại D. Tính tỉ số OA/OD.
Cho tam giác ABC có diện tích 20cm2 . trên cạnh AB lấy điểm M sao cho MA=MB, trên cạnh AC lấy điểm N sao cho AN=2NC . Nối BN và CM cắt nhau tại I a) Tính diện tích tam giác AMC . b) so sánh diện tích 2 tam giác AIC và BIC . c) AI kéo dài cắt BC tại P. So sánh BP và PC
1. Cho tam giác ABC có: BC// MN, AM= 6cm, MB= 2cm. AN= 7cm. Tính NC.
2. Cho tam giác ABC. Từ điểm M cạnh BC, kẻ các đg thẳng // với cạnh AB và AC. Chúng cắt cạnh AC và AB thứ tự là D và E. Tính tổng AE/AB + AD/AC
3. Cho tam giác ABC, trên AC lấy điểm D sao cho AD/DC= 1/2. M là trung điểm BD. Tia AM cắt BC tại E. Tính tỉ số EC/EB
4. Cho tam giác ABC, trên AB lấy điểm M sao cho 2.MA= MB. Qua M kẻ đg
thằng // với BC cắt AC tại N. Qua N kẻ đường thẳng song song với AB cắt BC tại P. Biết rằng PC= 6cm. Tính BC
Trên các cạnh AB, BC, AC của tam giác ABC lần lượt lấy các điểm M, N, P sao cho AM : MB = BN : NC = PC : PA.
a)Tính tỉ số Smnp theo Sabc và theo k
b)Tính k sao cho Smnp đạt giá trị nhỏ nhất
a, Đặt: \(\hept{\begin{cases}S_1=S_{PMA}\\S_2=S_{NMB}\\S_3=S_{PNC}\end{cases}}\)
\(\Rightarrow\)\(\frac{S_1}{S}=\frac{AM.AP}{AB.AC}\)
Và: \(\frac{S_2}{S}=\frac{BM.BN}{AB.CB}\)
Và: \(\frac{S_3}{S}=\frac{CP.CN}{AC.BC}\)
Ta có: \(\frac{AM}{MB}=\frac{k}{1}\Leftrightarrow\frac{AM}{AM+MB}=\frac{k}{k+1}\Leftrightarrow\frac{AM}{AB}=\frac{k}{k+1}\)
\(\frac{CP}{PA}=\frac{k}{1}\Leftrightarrow\frac{AP}{CP}=\frac{1}{k}\Leftrightarrow\frac{AP}{AP+CP}=\frac{1}{k+1}\)
\(\Leftrightarrow\frac{AP}{AC}=\frac{1}{k+1}\Rightarrow\frac{S_1}{S}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{\left(k+1\right)^2}\)
Chứng minh tương tự ta có: \(\frac{S_2}{S}=\frac{k}{\left(k+1\right)^2}\) và \(\frac{S_3}{S}=\frac{k}{\left(k+1\right)^2}\)
\(\Rightarrow S_{MNP}=S-\left(S_1+S_2+S_3\right)=S-\frac{3k}{\left(k+1\right)^2}.S=S\left(1-\frac{3k}{\left(k+1\right)^2}\right)\)
b, \(S_{MNP}\) nhỏ nhất \(\Leftrightarrow\frac{k}{\left(k+1\right)^2}\)lớn nhất.
Ta có: \(\left(k+1\right)^2\ge4k\Leftrightarrow\frac{k}{\left(k+1\right)^2}\le\frac{1}{4}\)
\(\Rightarrow Max\left[\frac{k}{\left(k+1\right)^2}\right]=\frac{1}{4}\)
Khi \(k=1\Leftrightarrow M,P,N\) là trung điểm của \(AB,BC,CA\) và \(Min_{S_{MNP}}=S\left[1-\frac{3.1}{\left(1+1\right)^2}\right]=\frac{S}{4}\)
(Cũng không chắc)
giải thích thêm chỗ S1/S, S2/S, S3/S