Xác định a sao cho: x^4 + 3x^3 - 15x^2 + ax + b chia hết cho x^2 + 5x - 3
Xác định số hữu tỉ a sao cho :
a) 3x\(^2\)+ ax - 4 chia hết cho x - a
b) x\(^{\text{4}}\) + 3x\(^{\text{3}}\)- 15x\(^2\)+ ax + b chia hết cho x\(^2\)+ 5x - 3
xác định a, b sao cho
a) x^4 + ax^2 + b chia hết cho x^2 + x + 1
b) ax^3 + bx^2 + 5x chia hết cho x^2 + 3x - 10
2. Xác định các hằng số a,b, sao cho
a) x^4 + ax^2 + b chia hết cho x^2 -x +1
b) ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x - 10
c) ax^ 3 + bx - 24 chia hết cho ( x+1) ( x+3)
Xác định hệ số a sao cho:
a) x^3 + ax^2 - 4 chia hết cho x^2 + 4x + 4
b) ax^5 + 5x^4 - 9 chia hết cho x - 1
Xác định a,b để
a. A=x^4+3x^3-17x^2+ax+b chia het cho B=x^2+5x-3
b. P=x^5+7x^4+ax^2+bx+72 chia hết cho Q=x^3-2x^2+4
xác định các hằng số a và b sao cho:
ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x + 10
xác định a,b sao cho x^4-3x^3+2x^2-ax+b chia hết cho x^2-x-2
Xác định các hằng số a,b sao cho
a) x^4 + ax^2 + b chia hết cho x^2 - x+1
b) ax^3 + bx^2 + 5x -50 chia hết cho x^2 + 3x - 10
c) ax^3 + bx-24 chia hết cho (x+1) (x+3)
\(a) x^4 + ax^2 + b \\
= x^4 + 2x^2 + b + ax^2 - 2x^2\\
= (x^2 + 1)^2 - x^2 + x^2(a + b)\\
= (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\
= (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1).
\)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\
\Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\
= (x^2 + 3x - 10)(cx + d) \\
= ax^3 + bx^2 + 5x - 50\\
= cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)
\(b = d + 3c\\
5 = 3d - 10c\\
-50 = -10d\)
Vậy \(a = 1, b = 8\)
\(d)f(x)=ax^3+bx-24\)
Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)
f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)
Giải ra ta được a = 2; b = -26
tìm và xác định số hiệu tỷ a,b sao cho : 3x^3+ax^2+bx+9 chia hết cho đa thức x^2-9
B) x^4+ax^33+bx-1 chia hết cho x^2-1