CMR:với mọi số nguyên dương n thì 3^(n+2)-2^(n+2)+3^n-2^n chia hết cho 10
Chúc ae nam moi khoe manh thanks
cmr:với mọi số nguyên dương n thì:
3n+2 -2n+2b +3n -2n chia hết cho 10
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
Ta có: \(3^{n+2}+3^n=3^n\left(3^2+1\right)=10.3^n⋮10\)
\(2^{n+2}+2^n=2^n\left(4+1\right)=5.2^n=10.2^{n-1}⋮10\)
=> \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
CMR:với n nguyên dương ta có:
S=3n+2-2n+2+3n-2n chia hết cho 10
S = 3n+2 - 2n+2 + 3n - 2n
S = 3n.(32+1) - 2n.(22+1)
S = 3n. 10 - 2n.5
S = 3n . 10 - 2n-1 . 2 . 5
S = 3n . 10 - 2n-1 . 10
S = 10. ( 3n - 2n-1)
=> S chia hết cho 10
S=3n+2+3n-(2n+2+2n)=3n(32+1)-2n(22+1)=3n*10-2n-1*2*5=3n*10-2n-1*10 chc 10
Chứng minh rằng: Mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\) ∀n∈N
Vậy ...
\(=3^n.9-2^n.4+3^n-2^n\)
\(=10.3^n-5.2^n\)
\(=10.\left(3^n-2^n\right)\)
\(\Leftrightarrow⋮10̸\)
cmr:a, 1/2+2/3+3/4+...+99/100<1
b, cmr mọi số nguyên dương n thì:3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 10
AI NHANH NHẤT MK TICK CHO! THANKS >-<
ai ủng hộ 9 li-ke tròn 100 Điểm hỏi đáp , thanks trước nha
Chứng minh rằng với mọi số nguyên dương n thì:
\(3^{n+2} - 2 ^{n+2} + 3 ^{n} - 2^{n}\) chia hết cho 10
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10
Cmr với mọi số nguyên dương thì :
a,3^n+2 - 3^n - 2^n chia hết cho 10
b,3^n+3 + 3^n+1 + 2^n+3 + 2^n+2 chia hết cho 6
chứng minh rằng :với mọi số nguyên dương n thì : (3^n+2)-(2^n+2) + ( 3^n) -(2^n) chia hết cho 10
=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10
=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10
CMR:Với mọi n c n thì a) (n+7).(n+10) chia hết cho 2 ; b) (4n+1).(8n+3) không chia hết cho 2
a) + Nếu n lẻ thì n + 7 là số chẵn => n + 7 chia hết cho 2 => (n + 7).(n + 10) chia hết cho 2
+ Nếu n chẵn thì n + 10 là số chẵn => n + 10 chia hết cho 2 => (n + 7).(n + 10) chia hết cho 2
Vậy với mọi n thuộc N thì (n + 7).(n + 10) luôn chia hết cho 2 ( đpcm)
b) Do 4n; 8n là số chẵn => 4n + 1; 8n + 3 là số lẻ
=> (4n + 1).(8n + 3) là số lẻ, không chia hết cho 2
Vậy với mọi n thuộc N thì (4n + 1).(8n + 3) không chia hết cho 2 ( đpcm)
1) CMR:với mọi số tự nhiên n ta có:
a)n(n+2)(n+7) chia hết cho 3
b)5^n-1 chia hết cho 4
c)n^2+n+2 ko chia hết cho 5