CMR: Với mọi số nguyên dương n thì (n+1)(n+2)(n+3).....(2n) chia hết cho 2n
CMR với mọi số nguyên dương n thì (n+1)(n+2)(n+3).....(2n) chia hết cho 2^n
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
CMR với mọi n nguyên dương thì n3+5n+22n+1-2 chia hết cho 6
cậu chỉ ra mk xem cách giải cái bài này nghĩ ma k ra ak?
tự chứng minh n3+5n=n3-n+6n=(n-1)n(n+1)+6n chia hết cho 6
phần còn lại là 22n+1-2=4n.2-2=2(4n-1) chia hết cho 2.3(=6)
->đfcm
CMR: Với mọi số nguyên dương n thì :
a)A=3n+3+3n+1+2n+2+2n+1 chia hết cho 6
b)B=3n+3-2n+3+3n+2-2n+1 chia hết cho 10
(nghiêm cấm hành vi làm đc câu 1 câu 2 viết tương tự xin cảm ơn)
Cmr: Với mọi số nguyên n thì
A=(2n+1)×(n^2- 3n-1)- 2n^3+1 chia hết cho 5.
mk làm luôn nhá ^^
tá có:A=(2n+1).(n2-3n-1)-2n3+1=\(2n^3-6n^2-2n+n^2-3n-1-2n^3+1.\)
=\(-5n^2-5n\)
Ta thấy:\(-5n⋮5\Rightarrow-5n^2⋮5\)
\(\Rightarrow-5n^2-5n⋮5\)với mọi số nguyên n
\(\Rightarrowđpcm\)
CMR:
a) Với mọi số nguyên n thì n3 - n chia hết cho 3
b) Với mọi số nguyên n thì n(n-1)(2n-1) chia hết cho 6
Giải giúp mình với
a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)
Nếu \(n=3k+1\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)
Nếu \(n=3k+2\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)
Vậy \(n^3-n⋮3\forall n\in Z\)
a) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 3
b) \(n\left(n-1\right)\left(2n-1\right)=n\left(n-1\right)\left(n+1+n-2\right)=\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n\)Ta có: \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3, mà(2,3)=1 nên \(\left(n-1\right)n\left(n+1\right)⋮6\)
Tương tự ta cũng được \(\left(n-2\right)\left(n-1\right)n⋮6\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n⋮6\)
\(\Rightarrow n\left(n-1\right)\left(2n-1\right)⋮6\left(đpcm\right)\)
B1: Cmr: a) bình phương của một số nguyên lẻ chia cho 4 thì dư 1
b) bình phương của một số nguyên lẻ chia cho 8 thì dư 1
B2: cmr: a) n2(n+1) + 2n(n+1) chia hết cho 6 với mọi n
b) (2n-1)3 - (2n - 1) chia hết cho 8
Chứng minh rằng với mọi số nguyên dương n thì:
B = 3n+3 - 2n+3 + 3n+2 - 2n+1 chia hết cho 10;
Chứng minh rằng:
Với mọi số n nguyên dương thì (n+1) (n+2) (n+3)...(2n) chia hết cho 2^n
Lời giải. Bước cơ sở: Với n = 1, ta có S1 = 1 + 1 = 2 chia hết cho 21 = 2. Bước quy nạp: Giả sử mệnh đề đúng với n = k, nghĩa là Sk = (k + 1)(k + 2) ...(k + k) chia hết cho 2k , ta phải chứng minh mệnh đề đúng với n = k + 1. Thật vậy, Sk+1 = (k + 2)(k + 3) ...[(k+1) + (k+1)]= 2(k + 1)(k + 2)...(k + k) = 2Sk. Theo giả thiết quy nạp Sk chia hết cho 2k , suy ra Sk+1 chia hết cho 2k+1. Theo nguyên lí quy nạp toán học Sn chia hết 2n với mọi n nguyên dương.
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;