Thu gọn:
a) (a + b) – (a – b)
b) (2a – b + c) – (a + b – c
Giúp em bài này ạ!
Với mọi a,b, c >0
CMR: \(2a+\frac{b}{a}+\frac{c}{b}\ge3\sqrt[3]{2c}\)
Bài này dạng BĐT Cô si ạ, em đang học Cô nhưng chưa thạo, bài này là cơ bản nên giờ các pro giúp em ạ:((
Sao lạ thế nhỉ, áp cái được luôn?
\(2a+\frac{b}{a}+\frac{c}{b}\ge3\sqrt[3]{2a.\frac{b}{a}.\frac{c}{b}}=3\sqrt[3]{2c}\)
Đẳng thức tự xét.
Ai giải hộ em bài này không ạ
Bài 1 cho vectơ a =(2,1) vecto b=(3,4) và vecto c=(7,2)
A )Tìm tọa độ vecto u=2 vecto a-vecto b , v=3vecto b- 2vecto c và w =5 vecto c+vecto a
b) Tìm tọa độ vecto x=2a+b-c và Z =2a-3b+c
c) Tìm tọa độ vecto W sao cho W+a =B-c
Tất cả đều có vecto nhé mọi người
a.
\(\overrightarrow{u}=2\left(2;1\right)-\left(3;4\right)=\left(1;-2\right)\)
\(\overrightarrow{v}=3\left(3;4\right)-2\left(7;2\right)=\left(-5;8\right)\)
\(\overrightarrow{w}=5\left(7;2\right)+\left(2;1\right)=\left(37;11\right)\)
b.
\(\overrightarrow{x}=2\left(2;1\right)+\left(3;4\right)-\left(7;2\right)=\left(0;4\right)\)
\(\overrightarrow{z}=2\left(2;1\right)-3\left(3;4\right)+\left(7;2\right)=\left(2;-8\right)\)
c.
\(\overrightarrow{w}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\Rightarrow\overrightarrow{w}=\overrightarrow{b}-\overrightarrow{c}-\overrightarrow{a}\)
\(\Rightarrow\overrightarrow{w}=\left(3;4\right)-\left(7;2\right)-\left(2;1\right)=\left(-6;1\right)\)
Bài 1. Cho biểu thức: A = (–2a + 3b – 4c) – (–2a – 3b – 4c)
a) Rút gọn A
b) Tính giá trị của A khi a = 2012; b = –1; c = –2013
Bài 2. Bỏ dấu ngoặc rồi thu gọn biểu thức:
a) A = (a + b) – (a – b) + (a – c) – (a + c)
b) B = (a + b – c) + (a – b + c) – (b + c – a) – (a – b – c)
1. A = ( -2a + 3b - 4c ) - ( -2a - 3b - 4c )
a) Rút gọn
A = ( -2a + 3b - 4c ) - ( -2a - 3b - 4c )
= -2a + 3b - 4c + 2a + 3b + 4c
= ( -2a + 2a ) + ( 3b + 3b ) + ( -4c + 4c )
= 0 + 6b + 0
= 6b
B1.a, A=6b
b,A=-10851
B2.a,A=2b-2c
b,B=2a
Bài 1:b)Tính giá trị : A = (–2a + 3b – 4c) – (–2a – 3b – 4c)
Ta thay a = 2012 ; b = -1 ; c = -2013 vào A ,Ta được:
A = [-2 . 2012 + 3 . (-1) - 4 . (-2013)]
\(\Rightarrow\)A = [ -4024 + (-3) - (-8052)]
\(\Rightarrow\)A = [ -4027 + 8052]
\(\Rightarrow\)A = 4025
Vậy A = 4025
Cho a,b,c là các số thực dương thỏa hệ thức: \(\dfrac{a}{b}=\dfrac{b}{c}\). Chứng minh: \(\dfrac{a}{c}=\dfrac{2a^2+5b^2}{2b^2+5c^2}\)
Ai giúp mình bài này với ạ!!!
Các anh chị có thể giúp em giải bài toán này được ko ạ!
Bài toán1: Cho x/y=y/z=z/x. So sánh x,y,z biết x+y+z khác 0
Bài toán 2: Chứng minh răng:
a) nếu a+z/a-z=b+3/b-3 thì a/z=b/3
b) nếu a-c/c-b=a/b thì 1/c=1/2 (1/a+1/b)
c) nếu a/b=c/d thì 2a^2016 + 5b^2016/2c^2016+5d^2016 = (a+b)^2016/(c+d)^2016
x/y=y/z=z/x
=> x*z = 2*y = x*y = 2*z
Ta có :
x*z = x*y
=> z=y
Ta có :
x*z = 2*y = y*y
Mà y = z (cmt)
=> x*z = y*z
=>x=y
Mà y = z (cmt)
=> x=y=z
Giúp em giải chi tiết bài phân tích đa thức thành nhân tử này với ạ!!! Em cảm ơn nhiều!!!
(a+b)(b+c)(c-a)+(b+c)(c+a)(a-b)+(c+a)(a+b)(b-c)
\(\left(a+b\right).\left(b+c\right).\left(c-a\right)+\left(b+c\right).\left(c+a\right).\left(a-b\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)
\(=\left(a+b\right).\left[\left(b+c\right).\left(c-a\right)+\left(c+a\right).\left(a-b\right)\right]+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)
\(=\left(a+b\right).\left(ac-a^2+bc-ab+a^2-ab+ac-bc\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)
\(=-\left(a+b\right).2a.\left(b-c\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)
\(=\left(a+b\right).\left(b-c\right).\left(-2a+c+a\right)=\left(a+b\right).\left(b-c\right).\left(c-a\right)\)
giai lai:
\(\left(b+c\right).\left[\left(a+b\right).\left(c-a\right)+\left(c+a\right).\left(a-b\right)\right]+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)
\(=-\left(b+c\right).2a.\left(b-c\right)+\left(b-c\right).\left(ac+bc+a^2+ab\right)\)
\(=\left(b-c\right).\left(-2ab-2ac+ac+bc+a^2+ab\right)\)
\(=\left(b-c\right).\left(-ab-ac+bc+a^2\right)\)
\(=\left(b-c\right).\left(a+b\right).\left(a-c\right)\)
Bài 3: Thu gọn các biểu thức:
a) A=(2a+b+3c)-(a-b+c)
b) B= (a+b-c)-(a-b+c)-(a-b-c)
c) C=(a-2b-c)-(-2a+b-c)-(-a-b-2c)
\(a,A=\left(2a+b+3c\right)-\left(a-b+c\right)\)
\(=2a+b+3c-a+b-c\)
\(=a+2b-2c\)
\(b,B=\left(a+b-c\right)-\left(-2a+b-c\right)-\left(-a-b-2c\right)\)
\(=a+b-c+2a-b+c+a+b+2c\)
\(=4a+b+2c\)
\(c,C=\left(a-2b-c\right)-\left(-2a+b-c\right)-\left(-a-b-2c\right)\)
\(=a-2b-c+2a-b+c+a+b+2c\)
\(=4a-2b+2c\)
help me giúp ................. em giải bài này với
1)(a+c/a+b)+(b+d/b+c)+(c+a/c+d)+(d+b/d+a)
2)(1/2a+b)+(1/2b+c)+(1/2c+a) (với a,b,c dương , a+b+c=1)
Mọi người giúp mình bài này với ạ!!!
,cho a, b, c là các số dương, cmr
a, √(c(a-c) +√(b(b-c)-√ab <=0 với a>c, b>c
b, nếu √(1+b)+√(1+c)=2√(1+a) thì b+c >=2a
a) Mình sửa lại đề bài của bạn chút : Cần chứng minh \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2=\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)
\(\Rightarrow\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2\le ab\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)(đpcm)
b) Ta có : \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\)
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left(2\sqrt{1+a}\right)^2=\left(1.\sqrt{1+b}+1.\sqrt{1+c}\right)^2\le\left(1^2+1^2\right)\left(1+b+1+c\right)\)
\(\Leftrightarrow4\left(1+a\right)\le2\left(b+c+2\right)\Leftrightarrow4+4a\le2\left(b+c\right)+4\Leftrightarrow b+c\ge2a\)(đpcm)