Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tokisaki Kurumi
Xem chi tiết
Phạm Nguyễn Minh Vương
25 tháng 6 2017 lúc 21:30

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)

Tokisaki Kurumi
25 tháng 6 2017 lúc 21:35

hey you, còn câu b,c?

le thai ha
25 tháng 6 2017 lúc 21:36

ở đây có ai thích sơn tùng không ?

Hoàng Ngọc Trâm
Xem chi tiết
Viên Tiến Duy
28 tháng 11 2023 lúc 17:06

Do a/b=c/d  ⇔ ad=bc

1) Ta có: (a+c)b=ab+bc

               (b+d)a=ab+ad

Do bc=ad nên ab+ad=ab+bc

Suy ra (a+c)b=(b+d)a   (đpcm)

2) Ta có: (b+d)c=bc+dc

               (a+c)d=ad+cd

Do bc=ad nên bc+dc=ad+cd

Suy ra (b+d)c=(b+d)c   (đpcm)

3)Ta có:(a+b)(c-d)=ac-ad+bc-bd=(ac-bd)-(ad-bc)

             (a-b)(c+d)=ac+ad-bc-bd=(ac-bd)+(ad-bc)

Do ad=bc  ⇔ ad-bc=0 nên (ac-bd)-(ad-bc)=(ac-bd)+(ad-bc)

⇔(a+b)(c-d)= (a-b)(c+d) (đpcm)

Nguyễn Ngọc Linh
Xem chi tiết
Nguyễn Hoàng Tiến
29 tháng 6 2016 lúc 22:04

a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)

<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c=1

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)

<=> \(a^2-ab+b^2-bc+c^2-ac=0\)

<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c

Nguyễn Ngọc Linh
30 tháng 6 2016 lúc 8:46

#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.

Đỗ Trần Khánh Linh
Xem chi tiết
Đoàn Đức Hà
7 tháng 10 2021 lúc 8:53

A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)

\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)

suy ra đpcm. 

\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)

suy ra đpcm. 

B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)

\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)

suy ra đpcm. 

Khách vãng lai đã xóa
Đạt Cao
Xem chi tiết
Trần Tuấn Hoàng
13 tháng 2 2022 lúc 14:37

\(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\) ; \(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a^3}{b^3}\)

 \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\dfrac{a}{d}\).

Lê Minh Tuấn
Xem chi tiết
Phan Nghĩa
21 tháng 9 2017 lúc 22:26

Lê Minh Tuấn bn tham khảo nha:

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

Lê Minh Tuấn
21 tháng 9 2017 lúc 22:37

cảm ơn OoO Ledegill2 OoO

Nguyễn Thị Minh Nguyệt
Xem chi tiết
Nguyễn Thanh Hằng
30 tháng 9 2017 lúc 17:11

Ta có :

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng t/c dãy tỉ số bawg nhau ta có :

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Leftrightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{b}{c}.\dfrac{b}{c}.\dfrac{b}{c}=\dfrac{c}{d}.\dfrac{c}{d}.\dfrac{c}{d}=\dfrac{a}{d}\)

\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)

Huỳnh Nguyễn Anh Tuấn
Xem chi tiết
Hồ My
Xem chi tiết