Cho tam giác ABC cân ở A. Trên cạnh BC lấy 2 điểm D và E sao cho BD= CE < BC/2. Đường thẳng kẻ từ D vuông góc với BC cắt AB ở đường thẳng kẻ từ E vuông góc với BC cắt AC ở N. CMR:
a) DM=EN
b) EM=DN
c) Tam giác ADE cân
Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy hai điểm D,E sao cho BD=CE<BC/2. Đường thẳng kẻ từ D vuông góc với BC cắt AB ở M, đường thẳng kẻ từ E vuông góc với BC cắt AC ở N. Chứng minh rằng:
a) DM=EN
b) EM=DN
c) Chứng minh tam giác ADE cân.
Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
giúp mk với
a) Vì ΔABCΔ��� cân tại A(gt)�(��)
=> ˆABC=ˆACB���^=���^ (tính chất tam giác cân).
Mà ˆACB=ˆNCE���^=���^ (vì 2 góc đối đỉnh).
=> ˆABC=ˆNCE.���^=���^.
Hay ˆMBD=ˆNCE.���^=���^.
Xét 2 ΔΔ vuông BDM��� và CEN��� có:
ˆBDM=ˆCEN=900(gt)���^=���^=900(��)
BD=CE(gt)��=��(��)
ˆMBD=ˆNCE(cmt)���^=���^(���)
=> ΔBDM=ΔCENΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).
=> DM=EN��=�� (2 cạnh tương ứng).
b) Xét 2 ΔΔ vuông DMI��� và ENI��� có:
ˆMDI=ˆNEI=900(gt)���^=���^=900(��)
DM=EN(cmt)��=��(���)
ˆDIM=ˆEIN���^=���^ (vì 2 góc đối đỉnh)
=> ΔDMI=ΔENIΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).
=> MI=NI��=�� (2 cạnh tương ứng).
=> I là trung điểm của MN.��.
Mà I∈BC(gt)�∈��(��)
=> Đường thẳng BC�� cắt MN�� tại trung điểm I của MN(đpcm).��(đ���).
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho tam giác cân ABC, AB=AC. Trên cạch BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt ở M và N. CM:
a) DM=EN
b) Đường thẳng BC cắt MN tại điểm I là trung điểm của MN
c) Đường thẳng cuông góc với MN tại I luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Mong trả lời, có hình thì càng tốt ạ
Em cảm ơn!
tam giác abc cân tại a. trên bc lấy e và d sao cho bd=ce<bc:2.đường thẳng kẻ từ d vuông góc với bc cắt ab ở m . đường thẳng kẻ từ e vuông góc với bc cắt ac ở n. cmr
a. dm=en
b. em=dn
c. tam giác abc cân
giúp vs. chìu kiểm tra rồi
Cho tam giác ABC cân ở A . Trên cạnh BC lấy 2 điểm D và E sao cho BD=CE nhỏ hơn BC/2 . Kẻ đoạn thẳng từ D vuông góc với BC cắt AB ở M , kẻ đoạn thẳng từ E vuông góc với BC cắt AC ở N . Chứng minh rằng : a) DM=EN. b)EM =DN. c)Tam giác ADE cân
cho tam giác ABC cân tại A. Trên cạnh BC lấy D;E sao cho BD=CE<BC:2 đường thẳng kẻ từ D vuông góc với AB cắt AB ở M đường thẳng kẻ từ E vuông góc AC cắt AC ở N . Chứng minh a) DM=EN b) EM=ĐN c) tam giác ADE cân đ) Gọi I là trung điểm của BC .Chứng tỏ rằng AI,MD,NE cũng đi qua 1 điểm.
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E, sao cho BD=CE. Từ D kẻ đường vuông góc với BC cắt AB ở M, từ E kẻ đường vuông góc với BC cắt AC ở N
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Từ D kẻ đường thẳng vuông góc với BC cắt AB tại M, từ E kẻ đường thẳng vuông góc với BC cắt AC ở N.
a. C/m MD=NE
b. MN cắt DE ở I.C/m I là trung điểm của DE
c. Từ C kẻ đường thẳng vuông góc với AC, từ B kẻ đường thẳng vuông góc với AB chúng cắt nhau tại O. Chứng minh AO là đường trung trực của BC