Cho biểu thức A = ( -a - b + c ) - ( -2.a - 2.b - c ) Rút gọn A
Bài 1: Cho a+b+c=0; rút gọn biểu thức A= a^2/(a^2-b^2-c^2) + b^2/(b^2-c^2-a^2) + c^2/(c^2-b^2-a^2)
Bài 2: Cho abc=2; rút gọn A= a/(ab+a+2) + b/(bc+b+1) + 2c/(ac+2c+2)
B1 Cho biểu thức: A=(-a+b-c)-(-a-b-c)
a) Rút gọn A
b)Tính giá trụ của A khi a = 1; b = -1; c = -2
B2 Cho biểu thức A =(-m+n-p)-(-m-n-p)
a) Rút gọn A
b)Tính giá trị của A khi m = 1; n = -1; p = -2
B3 Cho biểu thức : A=(-2a+3b-4c)-(-2a-3b-4c)
a) Rút gọn A
b)Tính giá trị của A khi a = 2012;b = -1;c = -2013
Cho biểu thức A= (-a+b-c) - (-a-b-c)
a) rút gọn biểu thức
b) Tính giá trị A biết a=1; b=-1; c=-2
a) Ta có:
\(A=\left(-a+b-c\right)-\left(-a-b-c\right)\)
\(=-a+b-c+a+b+c\)
\(=\left(-a+a\right)+\left(b+b\right)+\left(-c+c\right)\)
\(=0+2b+0\)
\(=2b\)
b) \(A=2b=2.\left(-1\right)=-2\)
a)A=(-a+b-c)-(-a-b-c)=-a+b-c+a+b+c=2b
b)A=2b=2x(-1)=-2
a,A = (-a + b - c) - (-a - b - c)
= -a + b - c + a + b + c
= (-a + a) + (b + b) + (-c + c)
= 0 + 2b + 0
= 2b
b, A = (-a + b - c) - (-a - b - c)
= [(-1) + (-1) - (-2)] - [(-1) - (-1) - (-2)]
= (-1) + (-1) + 2 + 1 - 1 - 2
= [(-1) + 1] + [(-1) - 1] + (2 - 2)
= 0 + (-2) + 0
= -2
Cho biểu thức: A = (-a + b - c) - (-a -b -c)
B = (-2a + 3b - ac) - (-2a - 3b - 4c)
Rút gọn 2 biểu thức trên
A=(-a+b-c)-(-a-b-c)
A=-a+b-c+a+b+c
A=(-a+a)+(b+b)-(c-c)
A=0+2b-0
A=2b
B=(-2a+3b-ac)-(-2a-3b-4c)
B=-2a+3b-ac+2a+3b+4c
B=(-2a+2a)-(3b-3b)-(ac-4c)
B=ac-4c
B=(a-4)c
rút gọn biểu thức (a+b+c)^2 +(b+c-a)^2+(c+a-b)^2+(a+b-c)^2
Ta có
(a+b+c)2+(b+c-a)2+(c+a-b)2+(a+b-c)2= [(a+b)+c]2+[(b-a)+c]2+[(a-b)+c]2+[(a+b)-c]
=(a+b)2+2c(a+b)+c2+(b-a)2+2c(b-a)+c2+(a-b)2+2c(a-b)+c2+(a+b)2-2c(a+b)+c2
=2(a+b)2+2(a-b)2+4c2( vì (a-b)2=(b-a)2)
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
bạn viết thế này khó nhìn quá
nhìn hơi đau mắt nhá bạn hoa mắt quá
1, cho biểu thức A =(-a+b-c)-(-a-b-c)
a, rút gọn a
b, tính giá trị của A khi a=1 , b=-1 , c=-2
2,cho biểu thức A=(-m+n-p)-(-m-p)
cho a+b+c=0. Rút gọn biểu thức sau: A=ab/(a^2+b^2-c^2)+bc/(b^2+c^2-a^2)+ca/(c^2+a^2-b^2)
Với a + b + c = 0 , ta có :
\(A=\frac{ab}{a^2+b^2-c^2}\)\(+\frac{bc}{b^2+c^2-a^2}\)\(+\frac{ca}{c^2+a^2-b^2}\)
\(\Leftrightarrow\frac{ab}{\left(a+b\right)^2-2ab-c^2}\)\(+\frac{bc}{\left(b+c\right)^2-2ab-a^2}\)\(+\frac{ca}{\left(c+a\right)^2-2ca-b^2}\)
\(\Leftrightarrow A=\frac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}\)\(+\frac{bc}{\left(b+c-a\right)\left(b+c+a\right)-2ab}\)\(+\frac{ac}{\left(a+c+b\right)\left(c+a-b\right)-2ca}\)
\(\Leftrightarrow A=\frac{ab}{-2ab}\)\(+\frac{bc}{-2bc}\)\(+\frac{ac}{-2ac}\)
\(\Leftrightarrow A=\frac{-1}{2}\)\(+\frac{-1}{2}\)\(+\frac{-1}{2}\)
\(\Leftrightarrow A=\frac{-3}{2}\)
Rút gọn biểu thức:
(a+b+c)^2 + (b+c-a)^2 + (c+a-b)^2 + (a+b-c)^2