tìm các số nguyên x,y
a) \(\frac{x}{3}\)=\(\frac{4}{y}\)
b)\(\frac{x}{y}\)=\(\frac{2}{7}\)
1. Tìm các số nguyên x sao cho: \(\frac{-7}{12}< \frac{x-1}{4}< \frac{2}{3}\)
2. Tìm các số nguyên x,y thoả mãn:
a) \(\frac{-1}{3}< \frac{x}{36}< \frac{y}{18}< \frac{-1}{4}\)
b)\(\frac{1}{220}< \frac{x}{165}< \frac{y}{132}< \frac{1}{60}\)
1. \(\frac{-7}{12}\)< \(\frac{x-1}{4}\)< \(\frac{2}{3}\)
=> \(\frac{-7}{12}\)< \(\frac{3.\left(x-1\right)}{12}\)< \(\frac{8}{12}\)
=> 3 . ( x - 1 ) thuộc { - 6 ; - 5 ; - 4 ; - 3 ; - 2 ; - 1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7}
Lập bảng tính giá trị x , cái này dễ lên bạn tự làm nha
1/ \(-\frac{7}{12}< \frac{x-1}{4}< \frac{2}{3}\)
hay \(\frac{-7}{12}< \frac{3.\left(x-1\right)}{12}< \frac{8}{12}\)
Vậy \(-7< 3.\left(x-1\right)< 8\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-5;-4;...;7\right\}\)
mà \(x\in Z\)nên \(3.\left(x-1\right)⋮3\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)
hay \(x-1\in\left\{-2;-1;0;1;2\right\}\)
tới đây dễ rồi thì làm nốt nhé, để thời gian làm mấy câu sau!
15. Tìm các số nguyên x, y, z biết \(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)
2.3. Tìm các số nuyên x và y biết \(\frac{-2}{x}=\frac{y}{3}\)và x < 0 < y
2.4*. Tìm các số nguyên x và y, biết \(\frac{x-3}{y-2}=\frac{3}{2}\)và x - y = 4
giải đầy đủ ra giùm. thanks
nè, không làm thôi ằ nhagg. khó thì đừng gửi câu trả lời làm gì cho mệt nha bạn
bài 1 : tìm các số nguyên x,y, biết :
a) \(\frac{x}{3}\)= \(\frac{4}{y}\)
b)\(\frac{x}{y}\)= \(\frac{2}{7}\)
bài 2 : tìm các số nguyên x,y,z biết :
\(\frac{-4}{8}\)= \(\frac{x}{-10}\)= \(\frac{-7}{y}\)= \(\frac{z}{-24}\)
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
Bài 2:
\(\dfrac{-4}{8}=\dfrac{x}{-10}\) = \(\dfrac{-7}{y}\) = \(\dfrac{z}{-24}\)
\(x\) = - \(\dfrac{4}{8}.\left(-10\right)=5\)
y = -7:(-\(\dfrac{4}{8}\)) = 14
z = -\(\dfrac{4}{8}\).(-24)= 12
Vậy (\(x;y;z\)) = (5; 14; 12)
Tìm các số nguyên x,y biết:
a)\(\frac{x-1}{-3}=\frac{4}{7}\)
b)\(\frac{2}{x}=\frac{y+1}{-9}\)
a)\(\frac{x-1}{-3}=\frac{4}{7}\)
\(\Leftrightarrow7x-7=-12\)
\(\Leftrightarrow7x=-12+7\)
\(\Leftrightarrow7x=-5\)
\(\Leftrightarrow x=\frac{-5}{7}\)
vì \(x\in Z\Rightarrow x\in\left\{\varnothing\right\}\)
b) \(\frac{2}{3}=\frac{y+1}{-9}\)
\(\Leftrightarrow3y+3=-18\)
\(\Leftrightarrow3y=-18-3\)
\(\Leftrightarrow3y=-21\)
\(\Leftrightarrow y=-7\)
hok tốt!!
Tìm các số nguyên x,y biết:
a,\(\frac{x}{3}=\frac{4}{y}\)
b,\(\frac{x}{y}=\frac{2}{7}\)
a, x/3=4/y nên x.y=3.4=12
12=1.12=(-1).(-12)=2.6=(-2).(-6)=3.4=(-3).(-4)
suy ra khi x=1 thì y=12 x=3 thì y=4
x=-1thì y=-12 x=4 thì y=3
x=12thìy=1 x=-3 thì y=-4
x=-12thìy=-1 x=-4 thì y=-3
x=2 thì y=6
x=6 thì y=2
x=-6 thì y=-2
x=-2 thì y=-6
a, Xét x.y=3.4
<=>x.y=12
<=>x;y thuộc Ư12= {+-1,+-2,+-3,+-4,+-6,+-12}
Vậy các cặp số nguyên x,y thỏa mãn là x,y thuộc{+-1,+-2,+-3,+-4,+-6,+-12}
a,
Vì \(\frac{x}{3}=\frac{4}{y}\)nên x . y = 3 . 4
x . y = 3 . 4
x . y = 12
=> x, y \(\in\)Ư(12)
Ư(12)= { -1; 1; 2; -2; 3; -3; 4; -4; 6; -6; -12; 12}
Ta có bảng:
x | -1 | 1 | -2 | 2 | -3 | 3 | -4 | 4 | -6 | 6 | -12 | 12 |
y | -12 | 12 | -6 | 6 | -4 | 4 | -3 | 3 | -2 | 2 | -1 | 1 |
Vậy x = -1, y = -12 x = 1, y = -12
x = -2, y = -6 x = 2, y = 6
x = -3, y = -4 x = 3; y = 4
x = -6, y = -2 x = 6, y = 2
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
1.Tìm số nguyên x biết
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
2.tìm các số nguyên x, y thỏa mãn
\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
Mình đang cần gấp! Cảm ơn nhiều
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
tìm các cặp số nguyên x,y sao cho:
a)\(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
b)\(\frac{5}{x-1}-\frac{y-1}{3}=\frac{1}{6}\)
c)\(\frac{x}{2}+\frac{y}{3}=\frac{x+y}{2+3}\)
a) Ta có : \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\Rightarrow\frac{x}{3}-\frac{1}{5}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5}{15}-\frac{3}{15}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5-3}{15}=\frac{4}{y}\)
\(\Rightarrow\left(x.5-3\right).y=15.4\)
\(\Rightarrow x.5.y-3.5=60\)
\(\Rightarrow xy5-15=60\)
\(\Rightarrow xy5=60+15\)
\(\Rightarrow xy5=75\)
\(\Rightarrow xy=75\div5\)
\(\Rightarrow xy=15\)
\(\Rightarrow xy=1.15=3.5=\left(-15\right)\left(-1\right)=\left(-3\right)\left(-5\right)=\left(-5\right)\left(-3\right)=\left(-1\right)\left(-15\right)=5.3=15.1\)
Do đó x = 1 thì y = 15
x = 3 thì y =5
x = -15 thì y = -1
x = -3 thì y = -5
x = -5 thì y = -3
x = -1 thì y = -15
x = 5 thì y = 3
x = 15 thì y = 1
a) Tìm các số nguyên x, y biết rằng: \(3-\frac{x}{4}=\frac{1}{y}\)
b) Tìm các số nguyên x để \(-\frac{2240}{6x+3}:1\frac{2}{3}\)là số nguyên.
a)Tìm cặp số x,y nguyên sao cho: \(\frac{x-1}{5}\)=\(\frac{3}{y+4}\)
b)Tìm các số nguyên x sao cho P=\(\frac{x-2}{x+1}\)nguyên
c)Tìm cặp số x,y nguyên sao cho: \(\frac{x}{3}\)- \(\frac{2}{y}\) = \(\frac{1}{6}\)