Tìm \(x\), biết:
\(\frac{x-4}{x}=\frac{1}{4}\)
1)
\(2\frac{1}{4}x-9\frac{1}{4}=-7\frac{1}{4}\)
\(2\frac{1}{4}x=\left(-7\frac{1}{4}\right)+9\frac{1}{4}\)
\(2\frac{1}{4}x=2\)
\(x=2:2\frac{1}{4}\)
\(x=\frac{8}{9}\)
Vậy \(x=\frac{8}{9}\)
1,Tìm số hữu tỉ x biết\(\frac{x+4}{2005}+\frac{x+3}{2006}=\frac{x+2}{2007}+\frac{x+1}{2008}\)
2,tìm x biết:\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
1) \(\frac{x+4}{2005}\)\(+\)\(\frac{x+3}{2006}\)= \(\frac{x+2}{2007}\)\(+\)\(\frac{x+1}{2008}\)
\(\Leftrightarrow\) \(\frac{x+4}{2005}\)\(+\)1 \(+\)\(\frac{x+3}{2006}\)\(+\)1 = \(\frac{x+2}{2007}\)\(+\)1 \(+\)\(\frac{x+1}{2008}\)\(+\)1
\(\Leftrightarrow\)\(\frac{x+2009}{2005}\)+ \(\frac{x +2009}{2006}\)= \(\frac{x+2009}{2007}\)+\(\frac{x+2009}{2008}\)
\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006) = (x + 2009)(1/2007 + 1/2008)
\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006 - 1/2007 - 1/2008) = 0
Ta thấy: 1/2005 + 1/2006 - 1/2007 - 1/2008 \(\ne\)0
\(\Leftrightarrow\)x + 2009 = 0
\(\Leftrightarrow\)x = -2009
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=\left(x-1\right)\left(x-2\right)x=0\)
tìm đc x=0;1;2
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
a) Tìm x, biết:-(x+84)+213=-16
b)Tìm x, biết: (x-1)2=\(|\frac{1}{4}-\frac{1}{2}-\frac{3}{4}|\)
\(a)\) \(-\left(x+84\right)+213=-16\)
\(\Leftrightarrow\)\(-x-84+213=-16\)
\(\Leftrightarrow\)\(x=213-84+16\)
\(\Leftrightarrow\)\(x=145\)
Vậy \(x=145\)
\(b)\) \(\left(x-1\right)^2=\left|\frac{1}{4}-\frac{1}{2}-\frac{3}{4}\right|\)
\(\Leftrightarrow\)\(\left(x-1\right)^2=\left|-1\right|\)
\(\Leftrightarrow\)\(\left(x-1\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=2\)
Chúc bạn học tốt ~
a) \(-\left(x+84\right)+213=-16\)
\(-\left(x+84\right)=-16-213\)
\(-\left(x+84\right)=-229\)
\(\Rightarrow x+84=229\)
\(\Rightarrow x=229-84=145\)
Vậy \(x=145\)
b) \(\left(x-1\right)^2=\left|\frac{1}{4}-\frac{1}{2}-\frac{3}{4}\right|\)
\(\left(x-1\right)^2=\left|\frac{-1}{4}-\frac{3}{4}\right|\)
\(\left(x-1\right)^2=\left|-1\right|\)
\(\left(x-1\right)^2=1\)
\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1+1=2\\x=-1+1=0\end{cases}}\)
Vậy \(x\in\left\{0;2\right\}\)
a) \(-\left(x+84\right)+213=-16\)
\(-x-(84-213)=-16\)
\(-x+129=-16\)
\(-x=-16-129\)
\(-x=-145\)
\(x=145\)
b) \(\left(x-1\right)^2=\left|\frac{1}{4}-\frac{1}{2}-\frac{3}{4}\right|\)
\(\left(x-1\right)^2=\left|-1\right|\)
\(\left(x-1\right)^2=1\)
\(\Rightarrow\left(x-1\right)^2=1^2\)
\(\Rightarrow x-1=1\Rightarrow x=2\)
CHÚC BN HỌC TỐT!!
tìm x biết:
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
tìm x biết:
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
\(\Rightarrow\frac{x-1}{99}-1-\frac{x+1}{101}+1+\frac{x-2}{98}-1-\frac{x+2}{102}+1+\frac{x-3}{97}-1-\frac{x+3}{103}+1+\frac{x-4}{96}-1-\frac{x+4}{104}+1=0\)
\(\Rightarrow\frac{x-100}{99}-\frac{x-100}{101}+\frac{x-100}{98}-\frac{x-100}{102}+\frac{x-100}{97}-\frac{x-100}{103}+\frac{x-100}{96}-\frac{x-100}{104}=0\)
\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\right)=0\)
Vì \(\frac{1}{99}>\frac{1}{101};\frac{1}{98}>\frac{1}{102};\frac{1}{97}>\frac{1}{103};\frac{1}{96}>\frac{1}{104}\)
\(\Rightarrow\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy \(x=100\)
\(\dfrac{x-1}{99}-\dfrac{x+1}{101}+\dfrac{x-2}{98}-\dfrac{x+2}{102}+\dfrac{x-3}{97}-\dfrac{x+3}{103}+\dfrac{x-4}{96}-\dfrac{x+4}{104}=0\)
<=> \(\dfrac{x-1}{99}-1-\dfrac{x+1}{101}-1+\dfrac{x-2}{98}-1-\dfrac{x-2}{102}-1+\dfrac{x-3}{97}-1-\dfrac{x+3}{103}-1+\dfrac{x-4}{96}-1-\dfrac{x+4}{104}=0\)
Tìm x biết: \(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}.\)
\(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}\)
\(\Rightarrow\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}+3=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}+3\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+4}{6}+1\right)+\left(\frac{x+5}{5}+1\right)=\left(\frac{x+2}{8}+1\right)\)\(+\left(\frac{x+3}{7}+1\right)+\left(\frac{x+6}{4}\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}\right)=\left(x+10\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{4}\right)\)
\(\Rightarrow\left(x+10\right)\frac{43}{90}=\left(x+10\right)\frac{29}{56}\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
cộng 3 vào cả hai vế nên phương trình vẫn bằng nhau
Ta có \(\frac{x+1}{9}+1+\frac{x+4}{6}+1+\frac{x+5}{5}+1=\frac{x+2}{8}+1+\frac{x+3}{7}+1+\frac{x+6}{4}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}-\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{4}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
mà \(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
Tìm x,y biết:
a,\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}+4=0\)=0
b, Tìm x biết \(|5x-3|-x=7\)
c, tìm số nguyên x biết:\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
mong mn giúp cô mik bắt nộp
b) \(\left|5x-3\right|-x=7\)
\(\Rightarrow\left|5x-3\right|=7+x\)
\(\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-\left(7+x\right)\end{cases}\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-7-x\end{cases}\Rightarrow}\orbr{\begin{cases}5x-x=7+3\\5x+x=-7+3\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}4x=10\\6x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{2}{3}\end{cases}}}\)
Vậy ....................
Bạn ơi !!! ý A tham khảo tại link này nè :
https://h.vn/hoi-dap/question/394208.html
~ Học tốt ~
3. Tìm x biết :
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
2. Tìm x nguyên biết :
\(1-3+3^2-3^3+...+\left(-3\right)^x=\frac{9^{1006}-1}{4}\)
\(3.\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\)\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1-\frac{x-4}{2008}+1+2=0\)
\(\Rightarrow\)\(\frac{x-1}{2011}-\frac{2011}{2011}+\frac{x-2}{2010}-\frac{2010}{2010}+\frac{x-3}{2009}-\frac{2009}{2009}-\frac{x-4}{2008}+\frac{2008}{2008}=0\)
\(\Rightarrow\)\(\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\)\(x-2012\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)
\(\Rightarrow\)\(x=2012\)