Cho hai số x,y thỏa mãn đẳng thức (x+sqrt(x^2+2016))(y+sqrt(y^2+2016))=2016. Tính x+y
a) Cho x,y thỏa mãn đẳng thức \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\).Tính x+y
b) Cho x,y thỏa mãn đẳng thức\(\left(\sqrt{x^2+2017}-x\right)\left(\sqrt{y^2+2017}-y\right)=2017\).Tính x+y
Cho các số x , y thỏa mãn :
\(\left(x+\sqrt{x^2}+2016\right)\left(y+\sqrt{y^2}+2016\right)=2016\)
Tìm giá trị của biểu thức \(P=x^{2015}+y^{2015}+2016\left(x+y\right)+1\)
Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P
cho x>2016 và y>2016 thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2016}\)
tính giá trị của biểu thức P=\(\frac{\sqrt{x+y}}{\sqrt{x-2016}+\sqrt{y-2016}}\)
Có :\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2016}\Rightarrow2016=\frac{xy}{x+y}\)
Do Đó :P =\(\frac{\sqrt{x+y}}{\sqrt{x-2016}+\sqrt{y-2016}}\)
\(\Leftrightarrow\)P =\(\frac{\sqrt{x+y}}{\sqrt{x-\frac{xy}{x+y}}+\sqrt{y-\frac{xy}{x+y}}}\)
\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\sqrt{\frac{x^2+xy-xy}{x+y}}+\sqrt{\frac{y^2+xy-xy}{x+y}}}\)
\(\Leftrightarrow\)P =\(\frac{\sqrt{x+y}}{\sqrt{\frac{x^2}{x+y}}+\sqrt{\frac{y^2}{x+y}}}\)
\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\frac{x}{\sqrt{x+y}}+\frac{y}{\sqrt{x+y}}}\) (vì x;y dương )
\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\frac{x+y}{\sqrt{x+y}}}\)\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\sqrt{x+y}}\)
\(\Leftrightarrow P=1\)
Cho hai số x,y thỏa mãn (x-2)^2016 + |y+1| = 0. Tính giá trị biểu thức A= 2.x^2.y^2016 - 3.(x+ y)^2017
Cho hai số x,y thỏa mãn (x-2)^2016 + |y+1| = 0 tính giá trị biểu thức A= 2.x^2.y^2016 - 3.(x+y)^2017
cho các số x,y thoả mãn :)
( x + \(\sqrt{x^2+2016}\) ) ( y + \(\sqrt{y^2+2016}\)) = 2016
Tính giá trị biểu thức :
A = x2015 + y2015 + 2016 ( x+y ) + 1
Cho x,y thỏa mãn \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
Tìm MIN A= \(9x^4+7y^4-12x^2+4y^2+5\)
Cho ba số thực dương x,y,z thỏa mãn xy+xz+yz=2016
\(\sqrt{\frac{yz}{x^2+2016}}+\sqrt{\frac{xy}{y^2+2016}}+\sqrt{\frac{xz}{z^2+2016}}\le\frac{3}{2}\)
thay 2016=xy+yz+xz vào các mẫu
dùng Cô-Si đảo vào từng phân số
sẽ dễ dàng chứng minh đc :D
Ta có
\(\sqrt{\frac{yz}{x^2+2016}}=\sqrt{\frac{yz}{x^2+yz+xy+xz}}\)
=\(\sqrt{\frac{yz}{\left(x+z\right)\left(x+y\right)}}\)\(\le\frac{1}{2}.\frac{y}{x+y}+\frac{1}{2}.\frac{z}{x+z}\)
Tương tự \(\sqrt{\frac{xy}{y^2+2016}}\le\)\(\frac{1}{2}\left(\frac{x}{y+x}+\frac{y}{y+z}\right)\)
\(\sqrt{\frac{xz}{z^2+2016}}\le\)\(\frac{1}{2}\left(\frac{x}{z+x}+\frac{z}{z+y}\right)\)
=> \(VT\)\(\le\)\(\frac{1}{2}\)(\(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{x+z}\)+\(\frac{y}{y+z}+\frac{z}{y+z}\))
=\(\frac{3}{2}\)(\(ĐPCM\))
1) Cho \(\left(x+\sqrt{x^2+1}\right).\left(y+\sqrt{y^2+1}\right)=1\)
Tính tổng: \(x^{2016}+y^{2016}\)
2) Cho 3 số dương x,y,z thỏa mãn:
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=3\sqrt{xyz}\)
Tính giá trị của biểu thức: \(T=\left(1+\frac{\sqrt{x}}{\sqrt{y}}\right).\left(1+\frac{\sqrt{y}}{\sqrt{z}}\right).\left(1+\frac{\sqrt{z}}{\sqrt{x}}\right)\)
nhận liên hợp ta có \(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)
mà theo đề bài ta có \(\left(\sqrt{x^2+1}+x\right)\left(y+\sqrt{y^2+1}\right)=1\)
==> \(\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\)
tương tự ta có \(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\)
trừ từng vế 2 pt trên ta có 2x=-2y <=>x=-y
đến đây ok rùi nhé bạn