Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thu ngà
Xem chi tiết
Phạm Thị Mai Thi
Xem chi tiết
Nguyễn Nhật Minh
25 tháng 12 2015 lúc 11:40

\(n^2+404=a^2\Leftrightarrow\left(a-n\right)\left(a+n\right)=1.404=4.101=2.202\)

+a -n =4 và a+n =101 => n =(101-4):2  = loại

+a-n=1 ; a +n =404 => n = (404 -1):2 =loại

+ a -n =2 ; a+n =202 => n =(202 -2 ) :2 = 100

Vậy n =100

 

Hồ Mỹ linh
Xem chi tiết
dang nu vi na
Xem chi tiết
Hồ Mỹ linh
Xem chi tiết
Pham Nhu Yen
Xem chi tiết
Nguyen Van Thanh
14 tháng 11 2016 lúc 22:50

Từ giả thiết suy ra (ay+bx)/xy = (bz+cy)/yz =(cx+az)/xz  hay a/x =b/y =c/z.

dặt x/a =y=b =z/c =k suy ra x =ak; y=bk; z=ck. thay vào biểu thức bài cho tìm được k=1/2

vậy x =a/2; y=b/2; z=c/2

Khánh Nguyễn Nam
14 tháng 6 2020 lúc 21:16

\(\frac{xy}{ay+bx}\)=\(\frac{yz}{bz+cy}\)=\(\frac{zx}{cx+az}\left(1\right)\)

\(\Rightarrow\)\(\frac{xyz}{ayz+bxz}\)=\(\frac{xyz}{bzx+cyx}\)=\(\frac{zyx}{cxy+azy}\)

\(\Rightarrow\)\(ayz+bxz=bzx+cyx=cxy+azy\)

\(\Rightarrow\)\(\hept{\begin{cases}ayz+bxz=bxz+cyx\\bzx+cyx=cxy+azy\\ayz+bxz=cxy+azy\end{cases}}\Rightarrow\hept{\begin{cases}ayz=cyx\\bzx=azy\\bxz=cxy\end{cases}}\)\(\Rightarrow\hept{\begin{cases}az=cx\\bx=ay\\bz=cy\end{cases}\left(2\right)}\)

thay (2) vào (1)

\(\Rightarrow\)\(\frac{xy}{2ay}\)=\(\frac{yz}{2bz}\)=\(\frac{zx}{2cx}\)

\(\Rightarrow\)\(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}\)\(=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)

\(\Rightarrow\left(\frac{x}{2a}\right)^2=\left(\frac{y}{2b}\right)^2=\left(\frac{z}{2c}\right)^2\)

\(\Rightarrow\text{​​}\text{​​}\)\(\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}\)

theo quy luật của dãy số bằng nhau, nên

\(\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\)\(\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}=\frac{\left(x^2+y^2+z^2\right)}{4\left(a^2+b^2+c^2\right)}=\frac{1}{4}\left(4\right)\)

từ (3) và (4)

\(\Rightarrow\)\(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\c=\frac{c}{2}\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Thu Phương
Xem chi tiết
Nguyễn Thu Phương
1 tháng 10 2017 lúc 9:28

ai lm đúng mk tk cho!

๖ACE✪Hoàngミ★Việtツ
1 tháng 10 2017 lúc 9:30

Từ 1 đến 2n+1 có: (2n+1-1):2+1=n+1(số hạng)

=>B=(1+2n+1).(n+1):2

=>B=(2n+2).(n+1):2

=>B=2.(n+1).(n+1):2

=>B=(n+1)2.2:2

=>B=(n+1)2

Vậy B là bình phương của n+1

P/s đề đúng là phải "chứng tỏ A là bình phương của 1 STN   A= 1+3+5+.....+(2n-1) với n thuộc N"

Meow
1 tháng 10 2017 lúc 9:34

Số số hạng của tổng trên là : [(2n - 1) -1] : 2 + 1 = n + 1 (số hạng)

Tổng của dãy trên là : [(2n - 1) + 1] . (n + 1) : 2 = (n + 1) ^2

=> Tổng trên là bình phương của n + 1

Phùng Tấn Phong
Xem chi tiết
kakashi
Xem chi tiết
Hoàng Phúc
20 tháng 1 2016 lúc 17:50

n2+404=a2

=>a2-n2=404=2.202=202.2

=>(a-n)(a+n)=2.202=202.2

thay vào từng TH rồi tính tiếp ,n=100

*cách khác:tham khảo chtt