Tìm số tự nhiên có 4 chữ số, biết rằng khi viết ngược số đó lại ta được số mới gấp 4 lần số ban đầu
Tìm số tự nhiên có 4 chữ số, biết rằng khi viết ngược số đó lại ta được số mới gấp 4 lần số ban đầu.
Gợi ý:
Gọi số cần tìm là abcd. (a # 0), 0 < a, b, c, d < 10.
abcd x 4 = dcba nên a có thể nhận giá trị 1 hoặc 2, không thể bằng 3 vì khi đó 4 lần abcd sẽ trở thành số có 5 chữ số.
Xét TH1: a = 1, dễ thấy vô lí vì 1bcd x 4 = dcb1.
Xét TH2: a = 2, ta có: 2bcd x 4 = dcb2.
=> d có thể bằng 3 hoặc 8.
Xét tiếp từng TH, KL. (Bạn tự giải)
Tìm một số tự nhiên có 4 chữ số biết rằng nếu viết số đó theo thứ tự ngược lại ta được số mới gấp 4 lần số ban đầu?
Gọi số đó là abcd
Ta có : dcba = 4 x abcd
=> dcba chia hết cho 4 => a là chữ số chẵn
Ta thấy a đương nhiên khác 0; và nếu a ≥ 4 thì 4.abcd ≥ 4.4000 > 9999 ≥ dcba
Do vậy a = 2
=> dcba = 4.abcd ≥ 4.2000 = 8000 => d = 8 hoặc d = 9
Ta thấy: 4.8 = 32 ; 4.9 = 36
Vậy d = 8
Ta lại có: dcba = 100.dc +ba = 4.25.dc +ba chia hết cho 4 nên ba chia hết cho 4
Do a =2 nên b chỉ có thể = 1;3;5;7;9
Tuy nhiên nếu b ≥ 3 thì : 8cba = 4.2bcd ≥ 4.2300 = 9200 (vô lý)
Vậy b = 1
Bây giờ ta có: 8c12 = 4.21c8
<=> 8012 +100.c = 4.2108 +4.10.c
<=> 60.c = 420
<=> c = 7
Vậy số cần tìm là: 2178
Đặt số ban đầu là abcd
Sau khi viết ngược là : dcba
Rồi bạn tự giải tiếp nha
Bài 17: Tìm số tự nhiên có 4 chữ số, biết rằng nếu viết số đó theo thứ tự ngược lại thì ta được số mới gấp 4 lần số ban đầu.
Bạn tham khảo cách giải nhé !
Gọi số đó là abcd ( coi như có dấu gạch trên đầu; nếu là phép nhân mình sẽ ghi dấu .)
Ta có:
dcba = 4.abcd
=> dcba chia hết cho 4 => a là chữ số chẵn
Ta thấy a đương nhiên khác 0; và nếu a ≥ 4 thì 4.abcd ≥ 4.4000 > 9999 ≥ dcba
Do vậy a = 2
=> dcba = 4.abcd ≥ 4.2000 = 8000 => d=8 hoặc d=9
Tuy nhiên do dcba = 4.abcd nên 4.d phải tận cùng bằng chữ số a.
Ta thấy: 4.8 = 32 ; 4.9 = 36
Vậy d = 8
Ta lại có: dcba = 100.dc +ba = 4.25.dc +ba chia hết cho 4
nên ba chia hết cho 4
Do a =2 nên b chỉ có thể = 1;3;5;7;9
Tuy nhiên nếu b ≥ 3 thì
8cba = 4.2bcd ≥ 4.2300 = 9200 (vô lý)
Vậy b = 1
Bây giờ ta có: 8c12 = 4.21c8
<=> 8012 +100.c = 4.2108 +4.10.c
<=> 60.c = 420
<=> c = 7
Vậy số cần tìm là: 2178.
Tìm số tự nhiên có bốn chữ số, biết rằng nếu viết theo thứ tự ngược lại thì ta được số mới gấp 4 lần số ban đầu
bài 1 ; Tìm số tự nhiên có 2 chữ số biết rằng nếu viết them vào bên phải và bên trái số đó mỗi bên 1 chữ số 2 ta được số mới gấp 4 chữ sỗ gấp 36 lần số ban đầu
bài 2'' Tìm số tự nhiên có 2 chữ số biết rằng nếu viết them số đó theo thứ tự ngược lại ta được tổng của số mới và số ban đầu là 99
tìm một số tự nhiên có 4 chữ số có 4 chữ số biết khi đảo ngược các chữ số của số đó ta được số mới gấp 4 lần số ban đầu
tìm 1 số tự nhiên có 2 chữ số , biết rằng số đó gấp 4 lần tổng các chữ số của nó . Nếu viết 2 chữ số của nó theo thứ tự ngược lại thì được số mới lớn hơn số ban đầu 36 đơn vị
Gọi số tự nhiên đó là ab (ab >10). Theo đề bài ta có :
Số đó gấp 4 lần tổng các chữ số của nó nên ta có phương trình:
\(ab=4\left(a+b\right)\Leftrightarrow10a+b=4a+4b\) \(\Leftrightarrow10a-4a+b-4b=0\Leftrightarrow6a-3b=0\) ⇔ 2a-b=0(1)
Nếu viết 2 chữ số của nó theo thứ tự ngược lại thì được số mới lớn hơn số ban đầu 36 đơn vị nên ta có phương trình :
\(ba-ab=36\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow9b-9a=36\Leftrightarrow b-a=4\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}2a-b=0\left(1\right)\\b-a=4\left(2\right)\end{matrix}\right.\)
Cộng từng vế của (1) và (2) ta được : a=4 Thay vào (2) ta được:
\(b-4=4\Leftrightarrow b=8\) ⇒ab=48. Vậy...
Tìm một số tự nhiên có hai chữ số , biết rằng số đó gấp 4 lần tổng các chữ số của nó . Nếu viết hai chữ số của nó theo thứ tự ngược lại thì được số mới lớn hơn số ban đầu 36 đơn vị
Gọi số đó có dạng \(\overline{xy}=10x+y\) với x;y là các số tự nhiên từ 1 tới 9
Do số đó gấp 4 lần tổng các chữ số của nó nên ta có:
\(10x+y=4\left(x+y\right)\Rightarrow2x-y=0\)
Khi viết ngược số đó ta được số mới có giá trị là: \(10y+x\)
Do số mới lớn hơn số ban đầu 36 đơn vị nên:
\(10y+x-\left(10x+y\right)=36\Rightarrow y-x=4\)
Ta được hệ: \(\left\{{}\begin{matrix}2x-y=0\\y-x=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Vậy số đó là 48
Cho một số tự nhiên có năm chữ số. Biết rằng khi nhân số đó với 4 thì ta được một số mới , được viết bằng chính các chữ số của số ban đầu nhưng theo thứ tự ngược lại. Số ban đầu là..........