Tìm A biết rằng A=\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\). Trình bày cả cách giải cho mik nhé.
=))
Rút gọn biểu thức:
A=\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
Toán violympic nhé trình bày cách làm giúp mik vs
Cho : \(\frac{2.a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
Tính M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
(trình bày cách làm nhé!)
Cho a+b+c=0 (\(a\ne0,b\ne0,c\ne0\))
Tính GTBT
\(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)
Các bạn nhớ trình bày cả cách giải!
Gọi biểu thức đã cho là A
ta có a+b+c =0 suy ra b+c = -a bình phương 2 vế ta có b2+c2+2bc=a2 suy ra 2bc = a2-b2-c2
tương tự thì ta có \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)
Với a+b+c =0 ta lại chứng minh được a3+b3+c3=3abc
Do đó \(A=\frac{3abc}{2abc}=\frac{3}{2}\) ( vì a,b,c khác 0)
563626993646846830699546963839068095685468787806796579=0597
Cho a,b,c khác 0 biết a+b+c=0. Tìm A=\(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
Trình bày rõ ràng ra giùm tớ. Ai học giỏi vào đây giải. Cần gấp nhe, ngày mai nộp rồi.
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(\frac{a+b}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)\)
Mà a+b+c = 0 nên a + c = -b
a + b = -c
b + c = -a
\(A=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)
Tìm các số hữu tỉ a,b biết rằng : \(a-b=\frac{a}{b}=2\cdot\left(a+b\right)\)
Ai biết thì giải giúp mình nhé. Nhớ trình bày cách giài nếu không thì mình không \(tick\) đâu nhé!
a - b = 2(a+b) = 2a + 2b
-a = 3b
a-b = -3b- b = -4b = \(\frac{a}{b}\)=\(\frac{-3b}{b}\)= - 3
b= 3/4
a= -3b= -9/4
Tìm a,b,c biết:
\(\frac{8}{47}=a+\frac{1}{b+\frac{1}{c}}\)
ai trình bày được lời giải sẽ có tick
1
cho a,b,c>0: abc=1
cm:\(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+\frac{9}{2\left(ab+bc+ca\right)}\ge\frac{9}{2}\)
2)
cho a,b,c >0 thỏa a+b+c=3. cm:
\(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\ge6\)
làm đc bài nào thì trình bàybài giải vào giùm mik lun nhé!
thanks
2) \(VT=\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)+3\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Xét \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\) (1)
Xét \(3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)
\(\Rightarrow3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Cho a,b,c khác 0 biết a+b+c=0. Hãy tính A= \(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
Help me. Mik cần gấp. Bạn nào biết bày mik với.
Ai biết cách làm, làm ơn ghi rõ ra dùm mik nhe. Cảm ơn nhiều trước.
CHO:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}CMR:\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
Các bn giúp mk vs.các bn viết cả cách giải ra nha!!!!!!!