Tìm nghiệm nguyên phương trình: x+xy+y=9
1. tìm nghiệm nguyên của phương trình:
p(x + y) = xy và p nguyên tố
2. tìm nghiệm nguyên của phương trình:
a. x + y + z + 9 = xyz
b. x + y + 1 = xyz
Tìm nghiệm nguyên của phương trình:
a) xy + 4x -2y =2
b) x + xy + y = 9
a, \(xy+4x-2y=2\)
\(\Rightarrow y\left(x-2\right)+4\left(x-2\right)=-6\)
\(\Rightarrow\left(x-2\right)\left(y+4\right)=-6\)
\(x-2\) | 1 | -6 | -1 | 6 | 2 | -3 | -2 | 3 |
\(y+4\) | -6 | 1 | 6 | -1 | -3 | 2 | 3 | -2 |
\(x\) | 3 | -4 | 1 | 8 | 4 | -1 | 0 | 5 |
\(y\) | -10 | -3 | 2 | -5 | -7 | -2 | -1 | -6 |
Tìm nghiệm nguyên của các phương trình sau:
a, 3xy + x -y =1
b, 5xy +x - 10y =4
c, xy -2x - y =5
d, x + xy+ y = 9
tìm nghiệm nguyên của phương trình x^2-4x+2y-xy+9=0
\(x^2-4x+2y-xy+9=0\)
\(\Leftrightarrow x^2-4x+4+2y-xy+5=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)y+5=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-y\right)=-5\)
⇒\(\left[{}\begin{matrix}\left(x-2\right)\left(x-2-y\right)=-5\cdot1\left(1\right)\\\left(x-2\right)\left(x-2-y\right)=-1\cdot5\left(2\right)\end{matrix}\right.\)
Vì đề kêu tìm nghiệm nguyên nên ta có
Th1:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-5\\x-2-y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=1\\x-2-y=-5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\end{matrix}\right.\)
Th2:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-1\\x-2-y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=5\\x-2-y=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=7\\y=6\end{matrix}\right.\end{matrix}\right.\)
Vậy .....
1. Tìm nghiệm nguyên của phương trình xy-x+y=4
\(xy-x+y=4\)
\(\Leftrightarrow x\left(y-1\right)+y-1=3\)
\(\Leftrightarrow\left(x+1\right)\left(y-1\right)=3\)
Kẻ bảng :
x+1 | 1 | -1 | 3 | -3 | |
y-1 | 3 | -3 | 1 | -1 | |
x | 0 | -2 | 2 | -4 | |
y | 4 | -2 | 0 | 0 | |
KL | tm | tm | tm | tm |
Vậy ...
p/s: check lại hộ tui nhá =)))
Tìm nghiệm nguyên của phương trình: \(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow x^2+2xy+y^2-xy-x^2y^2=0\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
VT là 1 số chính phương mà vế phải là tích 2 số tự nhiên liên tiếp
\(\Rightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\)
+ Với \(xy=0\Rightarrow\left(x+y\right)^2=x^2+y^2=0\Rightarrow x=y=0\)
+ Với \(xy+1=0\Rightarrow xy=-1\Rightarrow\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)
Tìm nghiệm nguyên của phương trình x^2+y^2=(x-y) (xy+2)+4
Tìm nghiệm nguyên dương của phương trình xy-x-y=2