Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
ai làm được mình tick cho
Tính A=1.2+2.3+3.4+....+n.(n+1)
cíu tui với , ai làm đúng cho 3 tick
Tính A = 1.2 + 2.3 + 3.4 + ..... + 49.50
ĐỐ AI LÀM ĐƯỢC ! MÌNH TICK CHO
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3
=> 3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 49.50.( 51 - 48 )
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.49.50
=> 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 48.49.50 - 48.49.50 ) + 49.50.51
=> 3A = 49.50.51
=> A = ( 49.50.51 ) : 3
=> A = 41650
A = 1.2 + 2.3 + 3.4 + ..... + 49.50
3A=1.2.3+2.3.3+3.4.3+...+49.50.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+48.49.(50-47)+49.50.(51-48)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+48.49.50-47.48.49+49.50.51-48.49.50
3A=(1.2.3-1.2.3)+(2.3.4-2.3.4)+...(47.48.49-47.48.49)-(48.49.50-48.49.50)+49.50.51
3A=0+0+...+0+0+49.50.51
3A=49.50.51
A=\(\frac{49.50.51}{3}\)
A=41650
Đáp số: A=41650
Tính
a)A=1.2+2.3+3.4+…+99.100
ai làm đúng và nhanh mình sẽ tick cho
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
A=1.2+2.3+3.4+…+99.100
3A = 1.2.3 + 2.3.3 + ... + 99.100.3
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
=> A = \(\frac{99.100.101}{3}\)= 333 300
3A = 1 × 2 × 3 + 2 × 3 × ( 4 - 1 ) + ... + 99 × 100 × ( 101 - 98 )
3A = 1 × 2 × 3 + 2 × 3 × 4 - 1 × 2 × 3 + ... + 99 × 100 × 101 - 98 × 99 × 100
3A = 99 × 100 × 101 = 999900
A = 999900 ÷ 3 = 333300
Tích mình cái nha
Tính tổng
A=1/1.2+1/2.3+1/3.4+..........+1/49+1/50
AI LÀM NHANH NHẤT MÌNH SẼ TICK
Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
ai tra loi nhanh nhat tui tick cho
S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
Ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
Thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
Ai tính cho mình bài này zới!! Tính được mình tick cho!!
\(S=1.2+2.3+3.4+...+99.100\)
Ta có:
3S = 1.2.3 + 2.3.4 + 3.4.3 + ... + 99.100.3
3S = 1.2 ( 3 - 0 ) + 2.3. ( 4 - 1 ) + 3.4 . ( 5 - 2 )............... 99.100 . ( 101 - 98 )
3S = ( 1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ... + 98.99.100 )
3S = 99.100.101 - 0.1.2
3S = 999900 - 0
3S = 999900
S = 999900 : 3
S = 333300
Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
tính : S=1.2+2.3+3.4+...+n.(n+1)
làm phải có cách làm mới dc tick còn ko thì ko tick đâu
làm chỉ mất công thôi
mo di em a.cach lam ma ngu thi tick bat cong thoi.ngo nhu bu
S=1.2 + 2.3 + ..... + n.(n+1)
3S = 1.2.3 + 2.3.3 + ..... + n.(n+1).3
3S = 1.2.3 + 2.3.(4-1) + ...... + n.(n + 1).[(n + 2) - (n - 1)]
3S = 1.2.3 + 2.3.4 - 1.2.3 + .... + n.(n + 1).(n + 2) - (n - 1).n.(n + 1)
3S = (1.2.3 - 1.2.3) + (2.3.4 - 2.3.4) +...... + [(n-1)n(n + 1) - (n - 1).n.(n + 1)] + n.(n + 1)(n + 2)
VẬy 3S = n.(n + 1)(n + 2)
Vậy S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
S=1.2+2.3+3.4+...+n.(n+1)
3S=1.2.3+2.3.(4-1)+...+n.(n+1)(n+2-(n-1))
3S=1.2.3+2.3.4-1.2.3+...+n(n+1)(n+2)-(n-1)n(n+1)
3S=n(n+1)(n+2)
=> S=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Tính A=1.2+2.3+3.4+4.5+...+199.200
Ai làm hay nhất mình cho 1+1=2(like)à like rồi bỏ like
Ta có: A=1.2+2.3+...+198.199+199.200
=>3A=1.2.3+2.3.3+...+198.199.3
+199.200.3
=>3A=1.2.3+2.3(4-1)+...+
198.199(200-197)+199.200(201-198)
=>3A=1.2.3+2.3.4-1.2.3+...+198.199.200
-197.198.199+199.200.201-198.199.200
=>3A=199.200.201
=>A=199.200.67
A=39800.67
A=2666600
Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
mình có ghi cách làm ở dưới, không biết đúng không, nếu sai sửa giúp mình nhé. cảm ơn!!!!!!!!!!
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)