các số nguyên tố
1. Thế nào là số nguyên tố ?
2. Viết các số từ 1 đến 100. Gạch chân và đóng khung các số nguyên tố ?
3. Viết các số nguyên tố nhỏ hơn 1000 ?
4. Vì sao số 0 và số 1 không phải là số nguyên tố ?
1:Số nguyên tố là STN<1,chỉ có hai ước là 1 và chính nó.
4.0và1 không phải là số nguyên tố vì hai số đó không lớn hơn 1
Chứng minh rằng:
a, Nếu p và p2+8 là các số nguyên tố thì p2+2 cũng là số nguyên tố.
b, Nếu p và 8p2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố.
Chứng minh rằng:
a, Nếu p và p2+8 là các số nguyên tố thì p2+2 cũng là số nguyên tố.
b, Nếu p và 8p2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố.
a) - Do p là số nguyên tố nên p là số tự nhiên.
*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)
*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)
*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)
Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.
b) (Làm tương tự bài trên)
- Do p là số nguyên tố => p là số tự nhiên.
*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)
*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)
*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)
Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.
1.Tìm tất cả các số nguyên tố p để 2^p+p^2 là số nguyên tố
2.Cho p là số nguyên tố và 8p-1 cũng là số nguyên tố.CMR 8p+1 là số nguyên tố
chứng minh rằng :8p-1 là số nguyên tố thì 8p+1 là hợp số
tìm p;q là số nguyên tố sao cho 7p+qvaf pq+11 đều là số nguyên tố
tìm các số nguyên tố a,b,c sao cho: 2a+3b+6c=78
tìm số nguyên tơố p sao cho các số sau đều là số nguyên tố:
a)p+2 và p+10
b) p+10 và p+20
Tìm các số nguyên tố p sao cho p + 8 và 4p + 1 đều là các số nguyên tố.
Ai giúp mình với, mình đang cần gấp!
Giải bằng phương pháp đánh giá em nhé.
+ Nếu p = 2 ta có:
2 + 8 = 10 (loại)
+ Nếu p = 3 ta có:
3 + 8 = 11 (nhận)
4.3 + 1 = 13 (nhận)
+ Nếu p = 3\(k\) + 1 ta có:
p + 8 = 3\(k\) + 1 + 8 = 3\(k\) + 9 = 3(\(k+3\)) là hợp số (loại)
+ nếu p = 3\(k\) + 2 ta có:
4p + 1 = 4(3\(k\) + 2) + 1 = 12\(k\) + 9 = 3\(\left(4k+3\right)\) là hợp số loại
Vậy p = 3 là giá trị thỏa mãn đề bài
Kết luận: số nguyên tố p sao cho p + 8 và 4p + 1 đều là các số nguyên tố đó là 3
Tìm các số nguyên tố p thỏa mãn 2^p+p^2 là số nguyên tố
Tìm số nguyên tố p sao cho p+10 và p+14 là các số nguyên tố
tìm số nguyên tố p sao cho p+74 và p+1994 là các số nguyên tố
Tìm số nguyên tố p sao cho p+74 và p+1994 là các số nguyên tố