Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Minh Khang
Xem chi tiết
Akai Haruma
28 tháng 8 2021 lúc 16:47

Lời giải:

Đặt $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=t$

$t^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}(1)$

Áp dụng tính chất dãy tỉ số bằng nhau:

$t^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}(2)$

Từ $(1);(2)$ ta có đpcm.

Nguyên Ngân Hà
Xem chi tiết
Nguyễn Việt Hoàng
4 tháng 9 2020 lúc 15:33

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

Vậy.............

Khách vãng lai đã xóa
ミ★Ƙαї★彡
4 tháng 9 2020 lúc 15:36

Áp dụng t/c dãy tỉ số bằng nhau 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Suy ra  \(\left(\frac{a}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

Ta có ddpcm 

Khách vãng lai đã xóa
Huyen Trang
4 tháng 9 2020 lúc 15:40

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\) \(\left(k\inℝ\right)\)

=> \(\hept{\begin{cases}a=bk\\b=ck\\c=dk\end{cases}}\Leftrightarrow\hept{\begin{cases}a=dk^3\\b=dk^2\\c=dk\end{cases}}\)

Thay vào ta được: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(=\frac{d^3k^9+d^3k^6+d^3k^3}{d^3k^6+d^3k^3+d^3}=\frac{d^3k^3\left(k^6+k^3+1\right)}{d^3\left(k^6+k^3+1\right)}=k^3\)

mà \(\frac{a}{d}=\frac{dk^3}{d}=k^3\)

=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

Khách vãng lai đã xóa
Tuyết Băng Lan
Xem chi tiết
hải yến gaming tv
Xem chi tiết
Phạm thị thảo
Xem chi tiết
Vũ Minh Đức
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Vũ Minh Tuấn
29 tháng 11 2019 lúc 18:41

Bài 1:

Hỏi đáp Toán

Chúc bạn học tốt!

Khách vãng lai đã xóa
Trần Quốc Tuấn hi
29 tháng 11 2019 lúc 18:30

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!

Khách vãng lai đã xóa
Akai Haruma
29 tháng 11 2019 lúc 19:00

Bài 2:

CM vế thứ nhất:

Với $a,b,c,d>0$:

\(\left\{\begin{matrix} \frac{a}{a+b+c}>\frac{a}{a+b+c+d}\\ \frac{b}{b+c+d}>\frac{b}{a+b+c+d}\\ \frac{c}{c+d+a}>\frac{c}{a+b+c+d}\\ \frac{d}{d+a+b}>\frac{d}{a+b+c+d}\end{matrix}\right.\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)

CM vế thứ 2:

Xét hiệu \(\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{a(a+b+c+d)-(a+d)(a+b+c)}{(a+b+c)(a+b+c+d)}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}< 0\) với mọi $a,b,c,d>0$

\(\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

Hoàn toàn tương tự:

\(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}; \frac{c}{c+d+a}< \frac{c+b}{c+d+a+b}; \frac{d}{d+a+b}< \frac{d+c}{d+a+b+c}\)

Cộng theo vế:

\(\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}=\frac{2(a+b+c+d)}{a+b+c+d}=2\)

Ta có đpcm.

Khách vãng lai đã xóa
Nguyễn Thị Thùy Linh
Xem chi tiết
Nguyễn Linh Chi
7 tháng 9 2019 lúc 13:51

Ta co: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=> \(\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)

=>. \(\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)

Ta co: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

          \(\Rightarrow\frac{\left(a+c\right)^3}{\left(b+d\right)^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}=\frac{a^3-c^3}{b^3-d^3}\)

Trương Ngọc Ánh
Xem chi tiết
Đức Anh 2k9
8 tháng 8 2018 lúc 17:08

b^2=ac= >a/b=b/c ; c^3=bd= >b/c=c/d

=> a/b=b/c=c/d= >a^3/b^3=b^3/c^3=c^3/d^3=(a^3+b^3+c^3)/(b^3+c^3+d^3) 

mà a^3/b^3=a/b.a/b.a/b=a/b.b/c.c/d=a/b

nên (a^3+b^3+c^3)/(b^3+c^3+d^3)=a/b