Tính nhanh: A = 1 3 − 3 4 − − 3 5 + 1 72 − 2 9 − 1 36 + 1 15
tính nhanh a 1/3 + 3/4 + 2/3 + 1/4 b 3/4 + 3/5 + 2 phần 8 + 4/10
a. \(\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\dfrac{3}{4}=1+\dfrac{3}{4}=\dfrac{7}{4}\)
b. \(\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{2}{8}+\dfrac{4}{10}=\left(\dfrac{3}{4}+\dfrac{2}{8}\right)+\left(\dfrac{3}{5}+\dfrac{4}{10}\right)=1+1=2\)
a ) `1/3 + 3/4 + 2/3 + 1/4 `
`= (1/3 + 2/3 )+ (3/4 + 1/4)`
`= 1 + 1 `
`= 2
b 3/4 + 3/5 + 2 phần 8 + 4/10`
`= (3/4 + 2/8 ) + ( 3/5 + 4/10 ) `
`= 1 + 1 `
`= 2`
tính nhanh 1*2+2*3+3*4+.....+1999*2000
áp dụng kết quả phần a tính nhanh 1*1+2*2+3*3+...+1999*1999
=2666666000
Có công thức như sau
1x2+2x3+3x4+...+nx(n+1)=nx(n+1)x(n+2):3
Tính nhanh:
A=3/1+3/1+2+3/1+2+3+3/1+2+3+4+...+3/1+2+3+...+100
Nhanh hộ mình nhé
\(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(=3\left(\frac{1}{\frac{1\cdot2}{2}}+\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+...+\frac{1}{\frac{100\cdot101}{2}}\right)\)
\(=3\left(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+...+\frac{2}{100\cdot101}\right)\)
\(=6\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{100\cdot101}\right)\)
\(=6\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=6\left(1-\frac{1}{101}\right)=6-\frac{6}{101}=\frac{606-6}{101}=\frac{600}{101}\)
1)Tính nhanh : A = 2+4+6+8+......+18
2)Tìm X biết X+1+4+7+.........+19=8400
3)Tính nhanh : B = 3-2+4-3+5-4........+12-11
Tính nhanh
A=2^3 - 1^4+1^5/4^3-1^2+2^5
Tính nhanh
A=1/3-1/3^2+1/3^3-1/3^4+.......+1/3^99-1/3^100
Tính nhanh:
A=3/1*2+3/2*1+3/3*4+.....+3/2015*2016
Tính nhanh a = 1/3 - 3/4 - 3/5 + 1/72 - 2/9 - 1/36 + 1/15
Tính nhanh:
A=1+3+3^2+3^3+3^4
B=(3^2+1)×(3^4+1)×(3^8+1)
Tính hộ e cái.Đang vội
A=1+3+3^2+3^3+3^4
=1+3+9+27+81
=(9+81)+(3+27)+1
=90+30+1
=121
B=(3^2+1)×(3^4+1)×(3^8+1)
=(9+1)×(81+1)×(6561+1)
=10x82x6562
=820x6562
=5380840
A =1+3+32+33+34
3A =3+32+33+35
3A-A=35-1
2A =243-1
A=242:2
A=121
tính nhanh
cho A=1/3-1/3^2+1/3^3-1/3^4+...+1/3^99-1/3^100
Ta có:
\(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
=> \(3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
=> \(A+3A=1-\frac{1}{3^{100}}\)
=> \(4A=\frac{3^{100}-1}{3^{100}}\)
=> \(A=\frac{3^{100}-1}{4.3^{100}}\)