Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dragon Boy
Xem chi tiết
Nguyễn Phương Oanh
Xem chi tiết
Ichigo
5 tháng 11 2019 lúc 22:38

= \(1:\frac{1+\sqrt{a}-\sqrt{a}}{1+\sqrt{a}}.\frac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\)

=\(1:\frac{1}{\sqrt{a}+1}.\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)}\)

=\(\left(\sqrt{a}+1\right)\frac{1}{\sqrt{a}+1}\)

=\(1\)

Khách vãng lai đã xóa
PHAM THANH THUONG
Xem chi tiết
Pham Thanh Thuong
Xem chi tiết
tranhuuphuoc
Xem chi tiết
Hoàng Thị Lan Hương
1 tháng 8 2017 lúc 10:45

ĐK  \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

Ta có \(P=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)

\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(a+2\sqrt{a}+1\right).\left(a-2\sqrt{a}+1\right)\right]\)

\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}.\frac{1}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2}=\frac{\sqrt{a}}{1+a}\)

Annh Phươngg
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 9 2019 lúc 23:05

ĐKXĐ:...

\(V=\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-1-2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-2\sqrt{x}-3}{\sqrt{x}+1}\right)=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(W=\left(\frac{\sqrt{a}-1}{a+\sqrt{a}+1}-\frac{a-3\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{1}{\sqrt{a}-1}\right).\left(\frac{1-\sqrt{a}}{a+1}\right)\)

\(=\left(\frac{\left(\sqrt{a}-1\right)^2-a+3\sqrt{a}-1-\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{1-\sqrt{a}}{a+1}\right)\)

\(=\left(\frac{-\left(a+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{-\left(\sqrt{a}-1\right)}{a+1}\right)=\frac{1}{a+\sqrt{a}+1}\)

•๖ۣۜUηĭɗεηтĭƒĭεɗ
Xem chi tiết
•๖ۣۜUηĭɗεηтĭƒĭεɗ
24 tháng 7 2019 lúc 14:29

Cho e xin cảm ơn trc ak

Nguyễn Hiền Mai
Xem chi tiết
Hoàng Tử Hà
13 tháng 6 2019 lúc 23:00

sorry, câu b nhầm \(\sqrt{a}+\sqrt{b}=4\) thành \(a+b=4\)

Sửa:

\(\sqrt{a}+\sqrt{b}=4\Rightarrow a+b+2\sqrt{ab}=16\Leftrightarrow a+b=16-2\sqrt{ab}\)

Áp dụng BĐT cô si cho 2 số ko âm

\(a+b\ge2\sqrt{ab}\)\(\Rightarrow16-2\sqrt{ab}\ge2\sqrt{ab}\Leftrightarrow16\ge4\sqrt{ab}\)

\(\Leftrightarrow-\sqrt{ab}\ge-4\)

"="\(\Leftrightarrow a=b=4\)

Hoàng Tử Hà
13 tháng 6 2019 lúc 22:49

a/ ĐKXĐ: a,b\(\ge\) 0, ab\(\ne\) 1

\(P=\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)+\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)-ab+1}{ab-1}\right]:\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)-\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)+ab-1}{ab-1}\right]\)

\(P=\left(\frac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}-ab+1}{ab-1}\right):\left(\frac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-ab-\sqrt{ab}-a\sqrt{b}-\sqrt{a}+ab-1}{ab-1}\right)\)

\(P=\frac{2a\sqrt{b}+2\sqrt{ab}}{ab-1}.\frac{ab-1}{-2\sqrt{a}-2}=\frac{2\sqrt{ab}\left(\sqrt{a+1}\right)}{-2\left(\sqrt{a}+1\right)}=-\sqrt{ab}\)

b/ BĐT cô si cho 2 số ko âm

\(a+b\ge2\sqrt{ab}\Rightarrow-\left(a+b\right)\le-2\sqrt{ab}\)

\(\Leftrightarrow-4\le-2\sqrt{ab}\Leftrightarrow-\sqrt{ab}\ge-2\)

"="\(\Leftrightarrow a=b=2\)

Lê Lan Hương
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Min
26 tháng 4 2017 lúc 5:47

nhân biểu thức liêng hợp ở mẫu là ra