Biến đổi vế trái thành vế phải:
a(b + c) - b(a - c) = (a + b)c
Bài 4. Biến đổi vế trái để được vế phải:
a) a(b – c)+ c(a – b) = b(a – c);
b) a(b – c) – b(a + c) = (a + b)(-c); Mik sẽ tick
\(a,VT=ab-ac+ac-bc=ab-bc=b\left(a-c\right)=VP\\ b,VT=ab-ac-ab-bc=-ac-bc=\left(a+b\right)\left(-c\right)=VP\)
Biến đổi vế trái thành vế phải:
a(b + c)(a - b) = (a + b)c
VT = a ( b + c ) − b ( a − c ) = ab + ac − ba + bc = ( ab − ab ) + ( ac + bc ) = 0 + a + b . c = VP Vậy a ( b + c ) − b ( a − c ) = ( a + b ) . c
Biến đổi vế trái thành vế phải :
a) \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\)
b) \(\left(a+b\right)\left(a-b\right)=a^2-b^2\)
Chú ý : "Biến đổi vế trái thành vế phải hoặc vế phải thành vế trái của một đẳng thức" là một cách chứng minh đẳng thức
a, \(a\left(b+c\right)-b\left(a-c\right)\)
\(=ab+ac-\left(ab-bc\right)\)
\(=ab+ac-ab+bc\)
\(=ac+bc\)
\(=\left(a+b\right)c\)
b,\(\left(a+b\right)\left(a-b\right)\)
\(=\left(aa+ab\right)-\left(ab+bb\right)\)
\(=aa+ab-ab-bb\)
\(=aa-bb\)
\(=a^2-b^2\)
Biến đổi vế trái thành vế phải :
a) a ( b + c ) − b ( a − c ) = ( a + b ) . c ;
b) ( a + b ) ( a − b ) = a 2 − b 2 .
Biến đổi vế trái thành vế phải
a .(b + c) - b .(a - c) = (a + b ) . c
a.(b+c)-b.(a-c)
=a.b+a.c-b.a+b.c
=(a.b-b.a)+a.b+b.c
=0+(a+b).c=(a+b).c(đpcm)
Ta có a .(b + c) - b .(a +c)
=a.b + a.c - b.a + b.c
=a.b - b.a + a.c + b.c
=0 + (a + b) . c
= (a +b) . c
Biến đổi vế trái ta có :
a. ( b + c ) - b. ( a - c )
= a.b + a.c - b.a + b.c
= a.c + b. c = ( a.b ) + c
biến đổi vế trái thành vế phải:
( a + b )( c + d ) - ( a + d )(b + c ) = ( a - c )( -b + d )
KHAI TRIEN VE TRAI
(a+b)(c+d)-(a+d)(b+c)
=ac+ad+bc+bd-ab-ac-bd-cd
=ad+bc-ab-cd
=a(-b+d)-c(-b+d)
=(a-c)(-b+d) GIONG NHU VE PHAI
THAY DUNG THI
Biến đổi vế trái thành vế phải:
a(b-c)+c(a-b)=b(a-c)
a(b-c)+c(a-b)=b(a-c)
ab - ac + ca - cb - ba + cb = 0
(ab - ab) - (bc - bc) - (ac - ac) =0
0 - 0 -0 = 0 (đpcm)
a(b-c) + c(a-b)
= ab - ac + ca - cb
= ab - cb
= b(a-c)
Hok tốt !
a(b-c)-a(b+d)=-a (c+d)
biến đổi vế trái thành vế phải
\(a\left(b-c\right)-a\left(b+d\right)=-a\left(c+d\right)\)
\(\Leftrightarrow a[\left(b-c\right)-\left(b+d\right)]=-a\left(c+d\right)\)
\(\Leftrightarrow a\left(b-c-b-d\right)=-a\left(c+d\right)\)
\(\Leftrightarrow a\left(-c-d\right)=-a\left(c+d\right)\)
\(\Leftrightarrow-a\left(c+d\right)=-a\left(c+d\right)\)
vậy ...
Biến đổi vế trái thành vế phải:
a) a + b 2 = a 2 + 2 a b + b 2
b) ( a − b ) ( a + b ) = a 2 − b 2
c) a ( b + c ) − b ( a − c ) = ( a + b ) c
a, a(b+c)−b(a−c)a(b+c)−b(a−c)
=ab+ac−(ab−bc)=ab+ac−(ab−bc)
=ab+ac−ab+bc=ab+ac−ab+bc
=ac+bc=ac+bc
=(a+b)c=(a+b)c
b,(a+b)(a−b)(a+b)(a−b)
=(aa+ab)−(ab+bb)=(aa+ab)−(ab+bb)
=aa+ab−ab−bb