a) Chứng minh rằng tích của 2 số tự nhiên liên tiếp chia hết cho 2
Giúp mk pài này nha !!! ths các bạn nhìu lắm ó!!!
chứng minh rằng :
a, tích của 2 số tự nhiên liên tiếp thì chia hết cho 2
b, tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
các bạn trả lời mau mau lên nhé . mình đang càn gấp lắm . sau đó các bạn gửi lời mời kết bạn với mình nhé . cảm ơn các bạn nhiều .
câu a là thế này : 2 số tự nhiên liên tiếp thì sẽ là 1 số chẵn và 1 số lẽ mà số chẵn chắc chắn chia ht cho 2
và
1 số lẽ nhân với 1 số chẵn sẽ là 1 số chẵn
=> 2 số tự nhiên liên tiếp chia ht cho 2
Chứng minh rằng: a) Tích của 2 số tự nhiên liên tiếp chia hết cho 2.
b) Tích của 3 số tự nhiên liên tiếp chia hết cho 6.
c) Tích của 4 số tự nhiên liên tiếp chia hết cho 24.
d) Tích của 5 số tự nhiên liên tiếp chia hết cho 120.
Giải cả 4 phần giúp mình nhé. Xin cảm ơn chân thành các bạn giúp mình giải cả 4 phần!!!
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
Giải hộ tớ bài toán này với:
a) chứng minh rằng tich của 2 số tự nhiên liên tiếp chia hết cho 2
b) chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 3
a) Gọi 2 số tự nhiên liên tiếp là a; a + 1
Ta có:
\(a.\left(a+1\right)\)
\(=a.a+a\)
\(2a+a\)
\(\Rightarrow a.\left(a+1\right)⋮2\)
Vậy tích của 2 số tự nhiên liên tiếp chia hết cho 2
b) Gọi 3 số tự nhiên liên tiếp là a; a + 1; a + 2
Ta có
\(a.\left(a+1\right).\left(a+2\right)\)
\(=\left(2a+a\right).\left(a+2\right)\)
\(=3a+\left(a+2\right)\)
\(~HT~\)
a) chứng minh rằng tich của 2 số tự nhiên liên tiếp chia hết cho 2
b) chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 3
a)Ta có:a.(a+1)chia hết cho 2
Giả sử a là một số chẵn
=>a+1 là một số lẻ
Vì a.(a+1)là một số chẵn =>Tích 2 số tự nhiên liên tiếp chia hết cho 2
b)tương tự
1: Chứng minh rằng: tích 2 số tự nhiên liên tiếp chia hết cho 2
2: Chứng minh rằng: tích của 3 số tự nhiên liên tiếp chia hết cho 6
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
1.trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2=> tích của 2 số tự nhiên liên tiếp luôn chia hết cho 2
2.trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 2 và 1 số chia hết cho 3 mà (2,3)=1=>tích của 3 số tự nhiên liên tiếp luôn chia hết cho 2.3=6
1/ tìm 10 số tự nhiên liên tiếp chứa nhiều số nguyên tố nhất
2/chứng minh rằng tích của 4 số tự nhiên liên tiếp thì chia hết cho 24
3/ chứng minh rằng tích của 3 số chẵn liên tiếp thì chia hết cho 48
4/ tìm hai số tự nhiên:
a/ có tích bằng 720, ƯCLN bằng 6
b/ có tích bằng 4050, ƯCLN bằng 3
5/số tự nhiên n có 39 ước. chứng minh rằng
a/ n là bình phương của 1 số tự nhiên a
b/ tích các ước của n bằng a39
có ai biết làm mấy bài trên ko toàn là toán nâng cao ko à các bạn ráng giúp mik nha giải chi tiết luôn còn ko có kết quả thôi cũng được
sao mà tham lam thế
chứng minh rằng : a, tích của 2 số tự nhiên liên tiếp chia hết cho 2.
b, tích của 3 số tự nhiên liên tiếp chia hết cho 6.
( mong các bn giúp đỡ )
A/tích của 2 số tự nhiên liên tiếp =>\(a\left(a+1\right)\)
Th1: Nếu a là số chẵn ta được
Số chẵn .(Số chẵn+1)
\(\Rightarrow a:2\)
\(\Rightarrow a\left(a+1\right)⋮2\)
Th1: Nếu a là số lẻ ta được
Số lẻ .(Số lẻ+1)
=Số lẻ.Số chẵn\(\Rightarrow a+1⋮2\)
\(\Rightarrow a\left(a+1\right)⋮2\)
B/ CM tương tự
a)Gọi hai số tự nhiên liên tiếp là n;n+1(n ∈ N)
Để n(n+1) chia hết cho hai => n có hai trường hợp
Nếu n chia hết cho 2 => n(n+1) chia hết cho 2(1)
Nếu n không chia hết cho 2 => n = 2k+1 => n+1 = 2k+1+1 = 2k+2 chia hết cho 2(2)
Từ (1); (2)
=> tích của hai số tự nhiên liên tiếp luôn luôn chia hết cho 2
b) Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
a) Ta thấy trong 2 số tự nhiên liên tiếp chắc chắn sẽ có 1 số chia hết cho 2
nên tích của chúng cũng chia hết cho 2
b) Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6
Chứng minh rằng tích của 8 số tự nhiên liên tiếp chia hết cho 128
CÁC BẠN GIÚP MÌNH NHOA !
chứng tỏ rằng
a) trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) trong ba số tự nhiên liên tiếp, có một số chia hết cho 3
các bạn giải rõ giúp mình nha
a) Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh .
Nếu a không chia hết cho 2 thì a = 2k + 1 ( k ∈ N)
Suy ra : a + 1 = 2k + 1 + 1
Ta có : 2k ⋮ 2 ; 1 + 1 = 2 ⋮ 2
Suy ra ( 2k +1 +1 ) ⋮ 2 hay ( a+ 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 ( k ∈ N)
Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
a) Gọi hai số tự nhiên liên tiếp là a , a + 1
Nếu a chia hết cho 2 thì bài toán đã được giải
Nếu a = 2k + 1 thì a + 1 = 2k + 2, chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán đã được giải
Nếu a = 3k + 1 thì a + 2 = 3k + 3 , chia hết cho 3
Nếu a = 3k + 2 thì a + 1 = 3k + 3 , chia hết cho 3
Bài này mik học rồi nên mik chắc chắn đúng luôn