Những câu hỏi liên quan
Tam giác
Xem chi tiết
Lightning Farron
15 tháng 12 2016 lúc 21:10

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\)

Ta thấy: \(\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\)

\(\Rightarrow\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x-\sqrt{2}\right|=0\\\left|y+\sqrt{2}\right|=0\\\left|x+y+z\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}+\left(-\sqrt{2}\right)+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{cases}\)

Đặng Kiều Trang
Xem chi tiết
daomanh tung
Xem chi tiết
Trà My
27 tháng 3 2017 lúc 0:26

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)

<=>\(\left|x-\sqrt{2}\right|+\left|y+\sqrt{2}\right|+\left|x+y+z\right|=0\)

Vì \(\left|x-\sqrt{2}\right|\ge0;\left|y+\sqrt{2}\right|\ge0;\left|x+y+z\right|\ge0\)

=>\(\left|x-\sqrt{2}\right|+\left|y+\sqrt{2}\right|+\left|x+y+z\right|\ge0\)

Dấu "=" xảy ra khi \(\left|x-\sqrt{2}\right|=\left|y+\sqrt{2}\right|=\left|x+y+z\right|=0\)

\(\left|x-\sqrt{2}\right|=0\Leftrightarrow x-\sqrt{2}=0\Leftrightarrow x=\sqrt{2};\left|y+\sqrt{2}\right|=0\Leftrightarrow y+\sqrt{2}=0\Leftrightarrow y=-\sqrt{2}\)

\(\left|x+y+z\right|=0\Leftrightarrow x+y+z=0\Leftrightarrow\sqrt{2}+\left(-\sqrt{2}\right)+z=0\Leftrightarrow z=0\)

Vậy .......

Đinh Thanh Nhàn
27 tháng 3 2017 lúc 0:06

do căn >= 0 lx+y+zl >=0 nên vế trái >=0
mà vế trái =0 => từng cái =0

Tiên Phụng
Xem chi tiết
Nguyễn Anh Quân
22 tháng 2 2018 lúc 20:07

Ta thấy : VT >= 0

Dấu "=" xảy ra <=> x-\(\sqrt{2}\)= 0 ; y+\(\sqrt{2}\)= 0 ; x+y+z = 0 

<=> x=\(\sqrt{2}\);  y=\(-\sqrt{2}\); z = 0

Vậy ...........

Tk mk nha

Nhữ Khánh Linh
Xem chi tiết
nguyen nguyet anh
Xem chi tiết
Trần Thanh Phương
12 tháng 5 2019 lúc 18:28

Vì \(\hept{\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\forall x\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\forall y\\\left|x+y+z\right|\ge0\forall x;y;z\end{cases}}\)

Do đó : \(\hept{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{cases}}\)

Mai Tiến Đỗ
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 15:30

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

Le Thi Khanh Huyen
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
17 tháng 9 2015 lúc 21:23

 

\(\sqrt{\left(x-\sqrt{2}\right)^2};\sqrt{\left(y+\sqrt{2}\right)};lx+y+zl\ge0\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{\left(y+\sqrt{2}\right)^2}=lx+y+zl=0\)

\(\Rightarrow x-\sqrt{2}=y+\sqrt{2}=x+y+z=0\Rightarrow x=\sqrt{2};y=-\sqrt{2}\Rightarrow z=0\)

vậy (x;y;z)=\(\left(\sqrt{2};-\sqrt{2};0\right)\)

Trần Thị Loan
17 tháng 9 2015 lúc 21:23

Nhận xét: \(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}\ge0;\left|x+y+z\right|\ge0\)

Để \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)thì 

\(\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{\left(y+\sqrt{2}\right)^2}=\left|x+y+z\right|=0\)

=> \(x-\sqrt{2}=0;y+\sqrt{2}=0;x+y+z=0\)

=> \(x=\sqrt{2};y=-\sqrt{2};z=-x-y=0\)

Vậy...

Cô bé áo xanh
Xem chi tiết
Dong tran le
8 tháng 1 2018 lúc 22:25

Ta có:

\(\Rightarrow\)\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\)

\(\Rightarrow\)\(\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\x+y+z=0\end{matrix}\right.\)

\(\Rightarrow\)\(\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)